首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3136篇
  免费   564篇
  国内免费   210篇
化学   983篇
晶体学   49篇
力学   1244篇
综合类   31篇
数学   159篇
物理学   1444篇
  2024年   11篇
  2023年   38篇
  2022年   127篇
  2021年   126篇
  2020年   105篇
  2019年   97篇
  2018年   87篇
  2017年   117篇
  2016年   147篇
  2015年   133篇
  2014年   202篇
  2013年   270篇
  2012年   176篇
  2011年   213篇
  2010年   185篇
  2009年   194篇
  2008年   180篇
  2007年   208篇
  2006年   178篇
  2005年   161篇
  2004年   134篇
  2003年   102篇
  2002年   87篇
  2001年   77篇
  2000年   65篇
  1999年   82篇
  1998年   65篇
  1997年   52篇
  1996年   35篇
  1995年   48篇
  1994年   42篇
  1993年   29篇
  1992年   24篇
  1991年   22篇
  1990年   15篇
  1989年   18篇
  1988年   17篇
  1987年   5篇
  1986年   5篇
  1985年   3篇
  1984年   4篇
  1983年   2篇
  1982年   6篇
  1979年   2篇
  1978年   2篇
  1974年   2篇
  1971年   2篇
  1969年   1篇
  1959年   2篇
  1957年   2篇
排序方式: 共有3910条查询结果,搜索用时 15 毫秒
61.
Molecular dynamics simulations of the displacement cascades in Fe-10%Cr systems are used to simulate the primary knocked-on atom events of the irradiation damage at temperatures 300,600,and 750 K with primary knockedon atom energies between 1 and 15 keV.The results indicate that the vacancies produced by the cascade are all in the central region of the displacement cascade.During the cascade,all recoil Fe and Cr atoms combine with each other to form Fe-Cr or Fe-Fe interstitial dumbbells as well as interstitial clusters.The number and the size of interstitial clusters increase with the energy of the primary knocked-on atom and the temperature.A few large clusters consist of a large number of Fe interstitials with a few Cr atoms,the rest are Fe-Cr clusters with small and medium sizes.The interstitial dumbbells of Fe-Fe and Fe-Cr are in the 111 and 110 series directions,respectively.  相似文献   
62.
This work honors the 75th birthday of Professor Ionel Michael Navon by presenting original results highlighting the computational efficiency of the adjoint sensitivity analysis methodology for function‐valued operator responses by means of an illustrative paradigm dissolver model. The dissolver model analyzed in this work has been selected because of its applicability to material separations and its potential role in diversion activities associated with proliferation and international safeguards. This dissolver model comprises eight active compartments in which the 16 time‐dependent nonlinear differential equations modeling the physical and chemical processes comprise 619 scalar and time‐dependent model parameters, related to the model's equation of state and inflow conditions. The most important response for the dissolver model is the time‐dependent nitric acid in the compartment furthest away from the inlet, where measurements are available at 307 time instances over the transient's duration of 10.5 h. The sensitivities to all model parameters of the acid concentrations at each of these instances in time are computed efficiently by applying the adjoint sensitivity analysis methodology for operator‐valued responses. The uncertainties in the model parameters are propagated using the above‐mentioned sensitivities to compute the uncertainties in the computed responses. A predictive modeling formalism is subsequently used to combine the computational results with the experimental information measured in the compartment furthest from the inlet and then predict optimal values and uncertainties throughout the dissolver. This predictive modeling methodology uses the maximum entropy principle to construct an optimal approximation of the unknown a priori distribution for the a priori known mean values and uncertainties characterizing the model parameters and the computed and experimentally measured model responses. This approximate a priori distribution is subsequently combined using Bayes' theorem with the “likelihood” provided by the multi‐physics computational models. Finally, the posterior distribution is evaluated using the saddle‐point method to obtain analytical expressions for the optimally predicted values for the parameters and responses of both multi‐physics models, along with corresponding reduced uncertainties. This work shows that even though the experimental data pertains solely to the compartment furthest from the inlet (where the data were measured), the predictive modeling procedure used herein actually improves the predictions and reduces the predicted uncertainties for the entire dissolver, including the compartment furthest from the measurements, because this predictive modeling methodology combines and transmits information simultaneously over the entire phase‐space, comprising all time steps and spatial locations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
63.
Organelle-targeted type I photodynamic therapy (PDT) shows great potential to overcome the hypoxic microenvironment in solid tumors. The endoplasmic reticulum (ER) is an indispensable organelle in cells with important biological functions. When the ER is damaged due to the production of reactive oxygen species (ROS), the accumulation of misfolded proteins will interfere with ER homeostasis, resulting in ER stress. Here, an ER-targeted benzophenothiazine-based photosensitizer NBS-ER was presented. ER targeting modification significantly reduced the dark toxicity and improved phototoxicity index (PI). NBS-ER could effectively produce O2⋅ with near-infrared irradiation, making its phototoxicity under hypoxia close to that under normoxia. Meanwhile, the photoinduced ROS triggered ER stress and induced apoptosis. In addition, NBS-ER possessed excellent photodynamic therapeutic effect in 4T1-tumor-bearing mice.  相似文献   
64.
The directionality of the hole-transfer processes between DNA backbone and base was investigated by using phosphorodithioate [P(S)=S] components. ESR spectroscopy in homogeneous frozen aqueous solutions and pulse radiolysis in aqueous solution at ambient temperature confirmed initial formation of G.+-P(S)=S. The ionization potential of G-P(S)=S was calculated to be slightly lower than that of guanine in 5′-dGMP. Subsequent thermally activated hole transfer from G.+ to P(S)=S led to dithiyl radical (P-2S.) formation on the μs timescale. In parallel, ESR spectroscopy, pulse radiolysis, and density functional theory (DFT) calculations confirmed P-2S. formation in an abasic phosphorodithioate model compound. ESR investigations at low temperatures and higher G-P(S)=S concentrations showed a bimolecular conversion of P-2S. to the σ2-σ*1-bonded dimer anion radical [-P-2S 2S-P-]G (150 K, DFT)=−7.2 kcal mol−1]. However, [-P-2S 2S-P-] formation was not observed by pulse radiolysis [ΔG° (298 K, DFT)=−1.4 kcal mol−1]. Neither P-2S. nor [-P-2S 2S-P-] oxidized guanine base; only base-to-backbone hole transfer occurs in phosphorodithioate.  相似文献   
65.
Japanese persimmon (Diospyros kaki L.) is recognized as an outstanding source of biologically active compounds relating to many health benefits. In the present study, NMR spectroscopy provided a comprehensive metabolic overview of Japanese persimmon juice. Detailed signal assignments of Japanese persimmon juice were carried out using various 2D NMR techniques incorporated with broadband water suppression enhanced through T1 effects (BB‐WET) or WET sequences, and 26 components, including minor components, were identified. In addition, most components were quantitatively evaluated by the integration of signals using conventional 1H NMR and BB‐WET NMR. This is the first detailed analysis combined with quantitative characterization of chemical components using NMR for Japanese persimmon. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
66.
Accurate quantification of polymer distributions is one of the main challenges in polymer analysis by liquid chromatography. The response of contemporary detectors is typically influenced by compositional features such as molecular weight, chain composition, end groups, and branching. This renders the accurate quantification of complex polymers of which there are no standards available, extremely challenging. Moreover, any (programmed) change in mobile‐phase composition may further limit the applicability of detection techniques. Current methods often rely on refractive index detection, which is not accurate when dealing with complex samples as the refractive‐index increment is often unknown. We review current and emerging detection methods in liquid chromatography with the aim of identifying detectors, which can be applied to the quantitative analysis of complex polymers.  相似文献   
67.
Sam C. Saunders, the son of Elizabeth Cundiff and Winston E. Saunders, was born in Richland, OR, on February 24, 1931. The family moved to La Grande, OR, in 1944, where Sam completed high school and two years at Eastern Oregon College. He then received the BSc degree in Mathematics from the University of Oregon, Eugene, OR, in 1952, and he attended the University of Washington, Seattle, WA, receiving a PhD degree under Z. W. Birnbaum. After graduating, he accepted employment at the Boeing Company in its Mathematical Services Unit and, in 1972, a position as a Full Professor at Washington State University, Pullman, WA, from which he retired in 1996.  相似文献   
68.
Using insights from the forest ecology literature, we analyze the effect of injured trees on stand composition and carbon stored in above‐ground biomass and the implications for forest management decisions. Results from a Faustmann model with data for a tropical forest on Kalimantan show that up to 50% of the basal area of the stand before harvest can consist of injured trees. Considering injured trees leads to an increase in the amount of carbon in above‐ground biomass of up to 165%. These effects are larger under reduced impact logging than under conventional logging. The effects on land expectation value and cutting cycle are relatively small. The results suggest that considering injured trees in models for tropical forest management is important for the correct assessment of the potential of financial programs to store carbon and conserve forest ecosystem services in managed tropical forests, such as reducing emissions from deforestation and forest degradation and payment for ecosystem services. Recommendations for Resource Managers
  • Considering the role of injured trees is important for managing tropical forests
  • These trees can cover up to 50% of basal area and contain more than 50% of the carbon stored in above‐ground biomass
  • Reduced impact logging leads to a larger basal area of injured trees and more carbon stored in injured trees than conventional logging
  • Injured trees play an important role when assessing the potential for carbon storage in the context of payment for forest ecosystem services.
  相似文献   
69.
This study reports the development of a simple and reproducible method, with high rates of recovery, to extract the cytotoxic agent piplartine from skin layers, and a sensitive and rapid UV‐HPLC method for its quantification. Considering the potential of piplartine for topical treatment of skin cancer, this method may find application for formulation development and pharmacokinetics studies to assess cutaneous bioavailability. Porcine skin was employed as a model for human tissue. Piplartine was extracted from the stratum corneum (SC) and remaining viable skin layers (VS) using methanol, vortex homogenization and bath sonication, and subsequently assayed by HPLC using a C18 column, and 1:1 (v/v) acetonitrile–water (adjusted to pH 4.0 with acetic acid 0.1%) as mobile phase. The quantification limit of piplartine was 0.2 μg/mL (0.6 μm ), and the assay was linear up to 5 μg/mL (15.8 μm ), with within‐day and between‐days assay coefficients of variation and relative errors <15%. Piplartine recovery from SC and VS varied from 86 to 96%. The method was suitable to assay samples from skin penetration studies, enabling detection of differences in cutaneous delivery in different skin compartments resulting from treatment with various formulations and time periods.  相似文献   
70.
In 2014, two unnatural nucleosides, d5SICS and dNaM, were shown to selectively base pair and replicate with high fidelity in a modified strain of E. coli, thus effectively expanding its genetic alphabet from four to six letters. More recently, a significant reduction in cell proliferation was reported in cells cultured with d5SICS, and putatively with dNaM, upon exposure to brief periods of near‐visible radiation. The photosensitizing properties of the lowest‐energy excited triplet state of both d5SICS and dNaM were implicated in their cytotoxicity. Importantly, however, the excited‐state mechanisms by which near‐visible excitation populates the triplet states of d5SICS and dNaM are currently unknown. In this study, steady‐state and time‐resolved spectroscopies are combined with quantum‐chemical calculations in order to reveal the excited‐state relaxation mechanisms leading to efficient population of the triplet states in these unnatural nucleosides in solution. It is shown that excitation of d5SICS or dNaM with near‐visible light leads overwhelmingly to ultrafast population of their triplet states on the femtosecond time scale. The results presented in this work lend strong support to the proposal that photoexcitation of these unnatural nucleosides can accelerate oxidatively generated damage to DNA and other biomolecules within the cellular environment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号