首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1887篇
  免费   280篇
  国内免费   66篇
化学   999篇
晶体学   5篇
力学   437篇
综合类   14篇
数学   413篇
物理学   365篇
  2024年   9篇
  2023年   37篇
  2022年   108篇
  2021年   97篇
  2020年   112篇
  2019年   90篇
  2018年   61篇
  2017年   71篇
  2016年   141篇
  2015年   96篇
  2014年   111篇
  2013年   189篇
  2012年   100篇
  2011年   120篇
  2010年   64篇
  2009年   62篇
  2008年   51篇
  2007年   67篇
  2006年   45篇
  2005年   60篇
  2004年   47篇
  2003年   51篇
  2002年   78篇
  2001年   37篇
  2000年   39篇
  1999年   33篇
  1998年   30篇
  1997年   32篇
  1996年   22篇
  1995年   19篇
  1994年   24篇
  1993年   13篇
  1992年   9篇
  1991年   13篇
  1990年   9篇
  1989年   10篇
  1988年   15篇
  1987年   12篇
  1986年   11篇
  1985年   17篇
  1984年   10篇
  1983年   4篇
  1982年   2篇
  1981年   1篇
  1978年   2篇
  1975年   1篇
  1971年   1篇
排序方式: 共有2233条查询结果,搜索用时 10 毫秒
101.
In the structure of 2‐(4‐chloroanilino)‐1,3,2λ4‐diazaphosphol‐2‐one, C12H11ClN3OP, each molecule is connected with four neighbouring molecules through (N—H)2…O hydrogen bonds. These hydrogen bonds form a tubular arrangement along the [001] direction built from R 33(12) and R 43(14) hydrogen‐bond ring motifs, combined with a C (4) chain motif. The hole constructed in the tubular architecture includes a 12‐atom arrangement (three P, three N, three O and three H atoms) belonging to three adjacent molecules hydrogen bonded to each other. One of the N—H groups of the diazaphosphole ring, not co‐operating in classical hydrogen bonding, takes part in an N—H…π interaction. This interaction occurs within the tubular array and does not change the dimension of the hydrogen‐bond pattern. The energies of the N—H…O and N—H…π hydrogen bonds were studied by NBO (natural bond orbital) analysis, using the experimental hydrogen‐bonded cluster of molecules as the input file for the chemical calculations. In the 1H NMR experiment, the nitrogen‐bound proton of the diazaphosphole ring has a high value of 17.2 Hz for the 2J H–P coupling constant.  相似文献   
102.
The tetraazamacrocyclic ligand 1,4,8,11‐tetramethyl‐1,4,8,11‐tetraazacyclotetradecane (TMC) has been used to bind a variety of first‐row transition metals but to date the crystal structure of the cobalt(II) complex has been missing from this series. The missing cobalt complex chlorido(1,4,8,11‐tetramethyl‐1,4,8,11‐tetraazacyclotetradecane‐κ4N )cobalt(II) chloride dihydrate, [CoCl(C14H32N4)]Cl·2H2O or [CoIICl(TMC)]Cl·2H2O, crystallizes as a purple crystal. This species adopts a distorted square‐pyramidal geometry in which the TMC ligand assumes the trans‐I configuration and the chloride ion binds in the syn‐methyl pocket of the ligand. The CoII ion adopts an S = spin state, as measured by the Evans NMR method, and UV–visible spectroscopic studies indicate that the title hydrated salt is stable in solution. Density functional theory (DFT) studies reveal that the geometric parameters of [CoIICl(TMC)]Cl·2H2O are sensitive to the cobalt spin state and correctly predict a change in spin state upon a minor perturbation to the ligand environment.  相似文献   
103.
The current study describes the synthesis, electrochemical, computational, and photochemical properties of octa (3-hydroxypropylthio) substituted cobalt (II) ( 4 ), copper (II) ( 5 ), nickel (II) ( 6 ) and zinc(II) ( 7 ) phthalocyanine derivatives. These novel compounds were characterized by elemental analysis,1H,13C NMR, FT-IR, UV-Vis, and MS. The redox behaviors of these metallo-phthalocyanines were investigated by the cyclic voltammetric method. The optimized molecular structure and gauge-including atomic orbital (GIAO)1H and13C NMR chemical shift values of these phthalocyanines in the ground state had been calculated by using B3LYP/6–31G(d,p) basis set. The outcomes of the optimized molecular structure were given and compared with the experimental NMR values. The photochemical properties including photodegradation and singlet oxygen generation of zinc(II) phthalocyanine were studied in DMSO solution for the determination of its photosensitizer behaviors.  相似文献   
104.
Molecularly imprinted polymer (MIP) computational design is expected to become a routine technique prior to synthesis to produce polymers with high affinity and selectivity towards target molecules. Furthermore, using these simulations reduces the cost of optimizing polymerization composition. There are several computational methods used in MIP fabrication and each requires a comprehensive study in order to select a process with results that are most similar to properties exhibited by polymers synthesized through laboratory experiments. Until now, no review has linked computational strategies with experimental results, which are needed to determine the method that is most appropriate for use in designing MIP with high molecular recognition. This review will present an update of the computational approaches started from 2016 until now on quantum mechanics, molecular mechanics and molecular dynamics that have been widely used. It will also discuss the linear correlation between computational results and the polymer performance tests through laboratory experiments to examine to what extent these methods can be relied upon to obtain polymers with high molecular recognition. Based on the literature search, density functional theory (DFT) with various hybrid functions and basis sets is most often used as a theoretical method to provide a shorter MIP manufacturing process as well as good analytical performance as recognition material.  相似文献   
105.
Targeting tyrosinase for melanogenesis disorders is an established strategy. Hydroxyl-substituted benzoic and cinnamic acid scaffolds were incorporated into new chemotypes that displayed in vitro inhibitory effects against mushroom and human tyrosinase for the purpose of identifying anti-melanogenic ingredients. The most active compound 2-((4-methoxyphenethyl)amino)-2-oxoethyl (E)-3-(2,4-dihydroxyphenyl) acrylate (Ph9), inhibited mushroom tyrosinase with an IC50 of 0.059 nM, while 2-((4-methoxyphenethyl)amino)-2-oxoethyl cinnamate (Ph6) had an IC50 of 2.1 nM compared to the positive control, kojic acid IC50 16700 nM. Results of human tyrosinase inhibitory activity in A375 human melanoma cells showed that compound (Ph9) and Ph6 exhibited 94.6% and 92.2% inhibitory activity respectively while the positive control kojic acid showed 72.9% inhibition. Enzyme kinetics reflected a mixed type of inhibition for inhibitor Ph9 (Ki 0.093 nM) and non-competitive inhibition for Ph6 (Ki 2.3 nM) revealed from Lineweaver–Burk plots. In silico docking studies with mushroom tyrosinase (PDB ID:2Y9X) predicted possible binding modes in the catalytic site for these active compounds. Ph9 displayed no PAINS (pan-assay interference compounds) alerts. Our results showed that compound Ph9 is a potential candidate for further development of tyrosinase inhibitors.  相似文献   
106.
Spontaneous S-alkylation of methimazole (1) with 1,2-dichloroethane (DCE) into 1,2-bis[(1-methyl-1H-imidazole-2-yl)thio]ethane (2), that we have described recently, opened the question about its formation pathway(s). Results of the synthetic, NMR spectroscopic, crystallographic and computational studies suggest that, under given conditions, 2 is obtained by direct attack of 1 on the chloroethyl derivative 2-[(chloroethyl)thio]-1-methyl-1H-imidazole (3), rather than through the isolated stable thiiranium ion isomer, i.e., 7-methyl-2H, 3H, 7H-imidazo[2,1-b]thiazol-4-ium chloride (4a, orthorhombic, space group Pnma), or in analogy with similar reactions, through postulated, but unproven intermediate thiiranium ion 5. Furthermore, in the reaction with 1, 4a prefers isomerization to the N-chloroethyl derivative, 1-chloroethyl-2,3-dihydro-3-methyl-1H-imidazole-2-thione (7), rather than alkylation to 2, while 7 further reacts with 1 to form 3-methyl-1-[(1-methyl-imidazole-2-yl)thioethyl]-1H-imidazole-2-thione (8, monoclinic, space group P 21/c). Additionally, during the isomerization of 3, the postulated intermediate thiiranium ion 5 was not detected by chromatographic and spectroscopic methods, nor by trapping with AgBF4. However, trapping resulted in the formation of the silver complex of compound 3, i.e., bis-{2-[(chloroethyl)thio]-1-methyl-1H-imidazole}-silver(I)tetrafluoroborate (6, monoclinic, space group P 21/c), which cyclized upon heating at 80 °C to 7-methyl-2H, 3H, 7H-imidazo[2,1-b]thiazol-4-ium tetrafluoroborate (4b, monoclinic, space group P 21/c). Finally, we observed thermal isomerization of both 2 and 2,3-dihydro-3-methyl-1-[(1-methyl-1H-imidazole-2-yl)thioethyl]-1H-imidazole-2-thione (8), into 1,2-bis(2,3-dihydro-3-methyl-1H-imidazole-2-thione-1-yl)ethane (9), which confirmed their structures.  相似文献   
107.
张汝波  张绍文 《化学教育》2021,42(24):50-53
介绍一个面向高年级本科生的计算化学实验.通过量子化学计算与统计热力学方法相结合,预测了 298 K时过氧化氢的二面角,并与实验值进行比较.通过这一应用实例,使学生能够深入理解结构化学和物理化学的相关理论知识,尤其是对统计热力学的本质有一个直观认识,提升学生利用统计热力学处理科学问题的能力.  相似文献   
108.
109.
The calculation of DFT (density functional theory) chemical shifts have become an important technique for the verification of a proposed structure. An easily calculated metric developed for proton and carbon chemical shifts of natural products and organic compounds, the calculated chemical shift index (CCSI), has been developed, which uses the deviation of each pair of calculated and experimental chemical shifts. The mean absolute deviation (MAD), which is commonly used as the goodness of fit metric for DFT calculated chemical shifts, can conceal large deviations in the calculated data. A classification strategy is also proposed for the CCSI to highlight when further assessment of the NMR data is required.  相似文献   
110.
Scientists all over the world are facing a challenging task of finding effective therapeutics for the coronavirus disease (COVID-19). One of the fastest ways of finding putative drug candidates is the use of computational drug discovery approaches. The purpose of the current study is to retrieve natural compounds that have obeyed to drug-like properties as potential inhibitors. Computational molecular modelling techniques were employed to discover compounds with potential SARS-CoV-2 inhibition properties. Accordingly, the InterBioScreen (IBS) database was obtained and was prepared by minimizing the compounds. To the resultant compounds, the absorption, distribution, metabolism, excretion and toxicity (ADMET) and Lipinski's Rule of Five was applied to yield drug-like compounds. The obtained compounds were subjected to molecular dynamics simulation studies to evaluate their stabilities. In the current article, we have employed the docking based virtual screening method using InterBioScreen (IBS) natural compound database yielding two compounds has potential hits. These compounds have demonstrated higher binding affinity scores than the reference compound together with good pharmacokinetic properties. Additionally, the identified hits have displayed stable interaction results inferred by molecular dynamics simulation results. Taken together, we advocate the use of two natural compounds, STOCK1N-71493 and STOCK1N-45683 as SARS-CoV-2 treatment regime.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号