Partial discharge (PD) is the main feature that effectively reflects the internal insulation defects of gas-insulated switchgear (GIS). It is of great significance to diagnose the types of insulation faults by recognizing PD to ensure the normal operation of GIS. However, the traditional diagnosis method based on single feature information analysis has a low recognition accuracy of PD, and there are great differences in the diagnosis effect of various insulation defects. To make the most of the rich insulation state information contained in PD, we propose a novel multi-information ensemble learning for PD pattern recognition. First, the ultra-high frequency and ultrasonic data of PD under four typical defects of GIS are obtained through experiment. Then the deep residual convolution neural network is used to automatically extract discriminative features. Finally, multi-information ensemble learning is used to classify PD types at the decision level, which can complement the shortcomings of the independent recognition of the two types of feature information and has higher accuracy and reliability. Experiments show that the accuracy of the proposed method can reach 97.500%, which greatly improves the diagnosis accuracy of various insulation defects. 相似文献
Necroptosis has emerged as an exciting target in oncological, inflammatory, neurodegenerative, and autoimmune diseases, in addition to acute ischemic injuries. It is known to play a role in innate immune response, as well as in antiviral cellular response. Here we devised a concerted in silico and experimental framework to identify novel RIPK1 inhibitors, a key necroptosis factor. We propose the first in silico model for the prediction of new RIPK1 inhibitor scaffolds by combining docking and machine learning methodologies. Through the data analysis of patterns in docking results, we derived two rules, where rule #1 consisted of a four-residue signature filter, and rule #2 consisted of a six-residue similarity filter based on docking calculations. These were used in consensus with a machine learning QSAR model from data collated from ChEMBL, the literature, in patents, and from PubChem data. The models allowed for good prediction of actives of >90, 92, and 96.4% precision, respectively. As a proof-of-concept, we selected 50 compounds from the ChemBridge database, using a consensus of both molecular docking and machine learning methods, and tested them in a phenotypic necroptosis assay and a biochemical RIPK1 inhibition assay. A total of 7 of the 47 tested compounds demonstrated around 20–25% inhibition of RIPK1’s kinase activity but, more importantly, these compounds were discovered to occupy new areas of chemical space. Although no strong actives were found, they could be candidates for further optimization, particularly because they have new scaffolds. In conclusion, this screening method may prove valuable for future screening efforts as it allows for the exploration of new areas of the chemical space in a very fast and inexpensive manner, therefore providing efficient starting points amenable to further hit-optimization campaigns. 相似文献
Optimization techniques are finding increasingly numerous applications in process design, in parallel to the increase of computer sophistication. The process synthesis problem can be stated as a largescale constrained optimization problem involving numerous local optima and presenting a nonlinear and nonconvex character. To solve this kind of problem, the classical optimization methods can lead to analytical and numerical difficulties. This paper describes the feasibility of an optimization technique based on learning systems which can take into consideration all the prior information concerning the process to be optimized and improve their behavior with time. This information generally occurs in a very complex analytical, empirical, or know-how form. Computer simulations related to chemical engineering problems (benzene chlorination, distillation sequence) and numerical examples are presented. The results illustrate both the performance and the implementation simplicity of this method.Nomenclature
ci
penalty probability
-
cp
precision parameter on constraints
-
D
variation domain of the variablex
-
f(·)
objective function
-
g(·)
constraints
-
i,j
indexes
-
k
iteration number
-
N
number of actions
-
P
probability distribution vector
-
piith component of the vectorP as iterationk
-
r
number of reactors in the flowsheet
-
u(k)
discrete value or action chosen by the algorithm at iterationk
-
ui
discrete value of the optimization variable in [umin,umax]
-
umin
lowest value of the optimization variable
-
umax
largest value of the optimization variable
-
Z
random number
-
x
variable for the criterion function
-
xp
precision parameter on criterion function
-
W(k)
performance index unit output at iterationk
-
0, 1
reinforcement scheme parameters
-
p
sum of the probability distribution vector components 相似文献
Optimization theory provides a framework for determining the best decisions or actions with respect to some mathematical model of a process. This paper focuses on learning to act in a near-optimal manner through reinforcement learning for problems that either have no model or the model is too complex. One approach to solving this class of problems is via approximate dynamic programming. The application of these methods are established primarily for the case of discrete state and action spaces. In this paper we develop efficient methods of learning which act in complex systems with continuous state and action spaces. Monte-Carlo approaches are employed to estimate function values in an iterative, incremental procedure. Derivative-free line search methods are used to obtain a near-optimal action in the continuous action space for a discrete subset of the state space. This near-optimal control policy is then extended to the entire continuous state space via a fuzzy additive model. To compensate for approximation errors, a modified procedure for perturbing the generated control policy is developed. Convergence results under moderate assumptions and stopping criteria are established. 相似文献
The observation and study of nonlinear dynamical systems has been gaining popularity over years in different fields. The intrinsic complexity of their dynamics defies many existing tools based on individual orbits, while the Koopman operator governs evolution of functions defined in phase space and is thus focused on ensembles of orbits, which provides an alternative approach to investigate global features of system dynamics prescribed by spectral properties of the operator. However, it is difficult to identify and represent the most relevant eigenfunctions in practice. Here, combined with the Koopman analysis, a neural network is designed to achieve the reconstruction and evolution of complex dynamical systems. By invoking the error minimization, a fundamental set of Koopman eigenfunctions are derived, which may reproduce the input dynamics through a nonlinear transformation provided by the neural network. The corresponding eigenvalues are also directly extracted by the specific evolutionary structure built in. 相似文献
Quantum machine learning based on quantum algorithms may achieve an exponential speedup over classical algorithms in dealing with some problems such as clustering. In this paper, we use the method of training the lower bound of the average log likelihood function on the quantum Boltzmann machine (QBM) to recognize the handwritten number datasets and compare the training results with classical models. We find that, when the QBM is semi-restricted, the training results get better with fewer computing resources. This shows that it is necessary to design a targeted algorithm to speed up computation and save resources. 相似文献
The machining process is primarily used to remove material using cutting tools. Any variation in tool state affects the quality of a finished job and causes disturbances. So, a tool monitoring scheme (TMS) for categorization and supervision of failures has become the utmost priority. To respond, traditional TMS followed by the machine learning (ML) analysis is advocated in this paper. Classification in ML is supervised based learning method wherein the ML algorithm learn from the training data input fed to it and then employ this model to categorize the new datasets for precise prediction of a class and observation. In the current study, investigation on the single point cutting tool is carried out while turning a stainless steel (SS) workpeice on the manual lathe trainer. The vibrations developed during this activity are examined for failure-free and various failure states of a tool. The statistical modeling is then incorporated to trace vital signs from vibration signals. The multiple-binary-rule-based model for categorization is designed using the decision tree. Lastly, various tree-based algorithms are used for the categorization of tool conditions. The Random Forest offered the highest classification accuracy, i.e., 92.6%.