首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   619篇
  免费   98篇
  国内免费   110篇
化学   785篇
晶体学   3篇
力学   16篇
综合类   3篇
物理学   20篇
  2024年   3篇
  2023年   14篇
  2022年   21篇
  2021年   22篇
  2020年   35篇
  2019年   30篇
  2018年   18篇
  2017年   27篇
  2016年   44篇
  2015年   42篇
  2014年   44篇
  2013年   62篇
  2012年   72篇
  2011年   42篇
  2010年   25篇
  2009年   45篇
  2008年   53篇
  2007年   38篇
  2006年   41篇
  2005年   28篇
  2004年   35篇
  2003年   30篇
  2002年   16篇
  2001年   4篇
  2000年   5篇
  1999年   5篇
  1998年   5篇
  1997年   8篇
  1995年   4篇
  1994年   2篇
  1992年   1篇
  1991年   3篇
  1989年   1篇
  1986年   1篇
  1984年   1篇
排序方式: 共有827条查询结果,搜索用时 15 毫秒
781.
[Fe]-hydrogenase, the third type of natural hydrogenase, is capable to heterolytically activate hydrogen molecule and transfer the resulting hydride to an unsaturated substrate, making it a promising hydrogenation catalyst. Over the last three decades, fruitful results on this enzyme have been achieved. In this review, we have summarized the major progresses about this enzyme including its structural characterisation, catalytic mechanism, cofactor biosynthesis, mimetic model development as well as artificial enzymes construction. In the meanwhile, challenges and opportunities of this enzyme and its mimetic systems in the application of synthetic chemistry and others are discussed.  相似文献   
782.
Since the early studies of Mannich, Mannich reaction has become an important tool for the synthesis of new compounds. Mannich bases can be either directly employed or used as intermediates. In this work, the one‐carbon unit transfer reaction of tetrahydrofolate coenzyme was initiated. 1,3‐Dimethylimidazolidine as a new tetrahydrofolate coenzyme model at formaldehyde oxidation level was used to react with ketone having active hydrogen atoms and amine to give the corresponding Mannich base in good yield by a covert Mannich reaction. A novel method for biomimetic synthesis of various Mannich bases is provided.  相似文献   
783.
An enantioselective total synthesis of the polycyclic diterpene (+)‐chatancin, a potent PAF antagonist, is reported. Proceeding in seven steps from dihydrofarnesal, this synthetic route was designed to circumvent macrocyclization‐based strategies to complex, cyclized cembranoids. The described synthesis requires only six chromatographic purifications, is high yielding, and avoids protecting‐group manipulations. An X‐ray crystal structure of this fragile marine natural product was obtained.  相似文献   
784.
祁恒治  赵蕴慧  朱孔营  袁晓燕 《化学进展》2011,23(12):2560-2567
针对聚合物材料在使用过程中难以检测的损伤,人们引入了自修复概念。本文就近年来自修复聚合物材料的研究进展作了系统综述。根据自修复过程是否使用修复剂,聚合物材料(包括聚合物基复合材料)的自修复可分为外援型和本征型两大类。外援型自修复借助于外加修复剂实现自修复,主要包括埋植微胶囊化修复剂和埋植中空纤维化修复剂两种方法。微裂纹的破坏使微胶囊或中空纤维释放修复剂,修复剂发生化学反应,键合裂纹面,达到自修复的效果。这种方法相对比较简单,修复效果较好,但不能重复进行,而且可选用的修复剂种类有限。本征型自修复则借助于体系内存在的Diels-Alder反应、动态共价化学、双硫键反应、含有氢键的超分子结构、π-π堆叠及离子聚合物等来完成,这些特殊的分子结构所涉及的化学反应是可逆的。本征型自修复聚合物材料的制备过程较为复杂,但这种自修复可以反复多次有效,从而延长了聚合物材料的使用寿命。本文针对以上两大类自修复聚合物材料体系的特点和应用进行综述,并展望其发展方向。  相似文献   
785.
Recently, well-ordered biological materials have been exploited to pattern inorganic nanoparticles into linear arrays that are of particular interest for nanoelectronic applications. In this work, a de novo designed E. coli-expressed polypeptide (previously shown to form highly rectilinear, β-sheet-containing structures) operates as a template for divalent metal cations. EDX and TEM analysis verify the attachment of platinum ions to the histidine-rich fibril surface, which was designed specifically to facilitate attachment of chemical moieties. Following chemical reduction, TEM further confirms the formation of localized zero-valent metal aggregates with sub-nanometer interparticle spacing.  相似文献   
786.
We demonstrate that the biomimetic method—which has been used for the formation of silica thin films—also could be applied directly to the formation of titanium dioxide (TiO2) thin films, which are technologically important materials because of their applications to photocatalytic purifiers, photochemical solar cells, and others. After generation of poly(2‐(dimethylamino)ethyl methacrylate) (PDMAEMA) films on gold surfaces by surface‐initiated polymerization, titanium bis(ammonium lactato)dihydroxide was used as a precursor of TiO2. The TiO2/PDMAEMA films were successfully formed on the surfaces in aqueous solution at neutral pH (pH 6.7) and room temperature, and were characterized by X‐ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, atomic force microscopy, scanning electron microscopy, and X‐ray diffractometry. The formed TiO2 films have an amorphous nature and large area uniformity in thickness. The degree of crystallization was controlled by annealing. We also investigated the pH effect and the phosphate incorporation in the films by using phosphate‐buffered solutions. The TiO2 films were formed in all the employed pH values in the range of 2 to 12, but phosphate anions were found to be incorporated into the films facilely only at low pH.  相似文献   
787.
This paper presents the first successful total synthesis of pikrosalvin, a compound naturally derived from Salvia officinalis, grounded on the structural framework delineated by Brieskorn and Fuchs. Our synthetic approach was underpinned by a biomimetic strategy inspired by the Stork–Eschenmoser hypothesis for the biosynthesis of terpenes via polyene cyclization. Starting with commercially available vanillic acid and geraniol, we strategically assembled pikrosalvin's structural core, consisting of a decalin A/B ring, an aromatic C ring, and a butyrolactone D ring. Challenges related to protective groups and specific catalytic conditions were effectively addressed, resulting in high product yields. We further demonstrated the efficacy and broad applicability of a combined-acid-catalyzed polyene cyclization methodology in the context of complex natural product synthesis. This study sets the stage for future biological and pharmacological investigations of pikrosalvin.  相似文献   
788.
Understanding the role of metal ions in biology can lead to the development of new catalysts for several industrially important transformations. Lanthanides are the most recent group of metal ions that have been shown to be important in biology, that is, in quinone-dependent methanol dehydrogenases (MDH). Here we evaluate a literature-known pyrroloquinoline quinone (PQQ) and 1-aza-15-crown-5 based ligand platform as scaffold for Ca2+, Ba2+, La3+ and Lu3+ biomimetics of MDH and we evaluate the importance of ligand design, charge, size, counterions and base for the alcohol oxidation reaction using NMR spectroscopy. In addition, we report a new straightforward synthetic route (3 steps instead of 11 and 33 % instead of 0.6 % yield) for biomimetic ligands based on PQQ. We show that when studying biomimetics for MDH, larger metal ions and those with lower charge in this case promote the dehydrogenation reaction more effectively and that this is likely an effect of the ligand design which must be considered when studying biomimetics. To gain more information on the structures and impact of counterions of the complexes, we performed collision induced dissociation (CID) experiments and observe that the nitrates are more tightly bound than the triflates. To resolve the structure of the complexes in the gas phase we combined DFT-calculations and ion mobility measurements (IMS). Furthermore, we characterized the obtained complexes and reaction mixtures using Electron Paramagnetic Resonance (EPR) spectroscopy and show the presence of a small amount of quinone-based radical.  相似文献   
789.
790.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号