首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13400篇
  免费   1786篇
  国内免费   1914篇
化学   9082篇
晶体学   488篇
力学   2593篇
综合类   52篇
数学   440篇
物理学   4445篇
  2024年   45篇
  2023年   183篇
  2022年   434篇
  2021年   446篇
  2020年   739篇
  2019年   524篇
  2018年   465篇
  2017年   521篇
  2016年   779篇
  2015年   773篇
  2014年   821篇
  2013年   1060篇
  2012年   730篇
  2011年   901篇
  2010年   799篇
  2009年   802篇
  2008年   864篇
  2007年   917篇
  2006年   832篇
  2005年   669篇
  2004年   669篇
  2003年   624篇
  2002年   421篇
  2001年   368篇
  2000年   313篇
  1999年   235篇
  1998年   212篇
  1997年   156篇
  1996年   146篇
  1995年   91篇
  1994年   94篇
  1993年   68篇
  1992年   72篇
  1991年   52篇
  1990年   47篇
  1989年   36篇
  1988年   20篇
  1987年   22篇
  1986年   30篇
  1985年   17篇
  1984年   24篇
  1983年   19篇
  1982年   17篇
  1981年   8篇
  1980年   3篇
  1979年   8篇
  1978年   6篇
  1973年   3篇
  1971年   6篇
  1957年   4篇
排序方式: 共有10000条查询结果,搜索用时 11 毫秒
101.
赵纯  张勤远  潘跃晓  姜中宏 《中国物理》2006,15(9):2158-2164
Er3+-doped tellurite glasses with molar compositions of xNb2O5-(14.7-x)Na2O--10ZnO--5K2O--10GeO2-- 60TeO2--0.3Er2O3 (x=0, 3, 5, 7 and 9) have been investigated for developing 1.5~μm fibre and planar amplifiers. The effects of Nb2O5 on the thermal stability and optical properties of Er3+-doped tellurite glasses have been discussed. It is noted that the incorporation of Nb2O5 (x=5) increases the thermal stability of tellurite glasses significantly. Er3+-doped niobium tellurite glasses exhibit a large stimulated emission cross-section (7.2\times 10-21- 10.7×10-21~cm2 and the gain bandwidth, FWHM×\sigmae^{\rm peak} (274\times 10-28 - 480×10-28~cm3), which are significantly higher than that of silicate and phosphate glasses. In addition, the intensity of upconversion luminescence of the Er3+-doped niobium tellurite glasses decreases rapidly with increasing Nb2O5 content. As a result, Er3+-doped niobium tellurite glasses might be a potential candidate for developing laser or optical amplifier devices.  相似文献   
102.
The novel properties of nanoparticulate materials (NPM) and the rapid development of NPM based products have raised many unanswered questions and concerns by different stakeholders over its consequences for the environment and human health. These concerns have led to an increasing discussion in both the US and Europe about possible regulatory policies for NPM. In this article a comparative study of stakeholders’ perceptions on regulatory policy issues with NPM in Europe is presented. It was found that industry wants to regulate this area if the scientific evidence demonstrates that NPM are harmful, but also that the regulatory bodies do not find it necessary at this point of time to regulate until scientific evidence demonstrates that NPM are harmful. This research therefore shows that there will most likely not be any regulatory interventions until there is an established and convincing scientific knowledge base demonstrating that NPM can be hazardous. It is furthermore discussed in this article the different roles and responsibilities of the stakeholders in financing the research required to establish the necessary level of fundamental scientific evidence. It was also found that the activity of the regulatory bodies on this issue differ between the European countries.  相似文献   
103.
The synthesis of Al–Cr single quasicrystal (QC) nanoparticles of the decagonal phase was achieved by introducing an advanced gas flow evaporation method. By obtaining successive electron diffraction patterns for single-QC nanoparticles, the phase transformation temperature of a single-QC nanoparticle was determined to be 700 °C. It was also determined that part of the QC nanoparticle decomposed into hex-Al8Cr5 and Al during the phase transformation. Since the grain growth did not occur during the phase transformation in the present experiment, the inherent phase transformation temperature could be measured.  相似文献   
104.
黎栋栋  周武 《物理学报》2017,66(21):217303-217303
二维原子晶体材料,如石墨烯和过渡金属硫族化合物等,具有不同于其块体的独特性能,有望在二维半导体器件中得到广泛应用.晶体中的结构缺陷对材料的物理化学性能有直接的影响,因此研究结构缺陷和局域物性之间的关联是当前二维原子晶体研究中的重要内容,需要高空间分辨率的结构研究手段.由于绝大部分二维原子晶体在高能量高剂量的电子束辐照下容易发生结构损伤,利用电子显微方法对二维原子晶体缺陷的研究面临诸多挑战.低电压球差校正扫描透射电子显微(STEM)技术的发展,一个主要目标就是希望在不损伤结构的前提下对二维原子晶体的本征结构缺陷进行研究.在STEM下,多种不同的信号能够被同步采集,包括原子序数衬度高分辨像和电子能量损失谱等,是表征二维原子晶体缺陷的有力工具,不但能对材料的本征结构进行单原子尺度的成像和能谱分析,还能记录材料结构的动态变化.通过调节电子束加速电压和电子辐照剂量,扫描透射电子显微镜也可以作为电子刻蚀二维原子晶体材料的平台,用于加工新型纳米结构以及探索新型二维原子晶体的原位制备.本综述主要以本课题组在石墨烯和二维过渡金属硫族化合物体系的研究为例,介绍低电压扫描透射电子显微学在二维原子晶体材料研究中的实际应用.  相似文献   
105.
The amorphous Ge8Sb2Te11thin films with varying thickness are thermally deposited on well-cleaned glass substrate from its polycrystalline bulk. Absence of any sharp peak confirms the amorphous nature of deposited films. Thickness-dependent electrical and optical properties including dc-activation energy, sheet resistivity, optical band gap, band tailing parameter, etc. of Ge8Sb2Te11thin films have been studied. The optical parameters have been calculated from transmission, reflection and absorbance data in the spectral range of 200–1100 nm. It has been found that optical band gap and band tailing parameter decreases with the increase in Ge8Sb2Te11thin films thickness. The dc-activation energy and sheet resistivity decreases while the crystallization temperature of the amorphous Ge8Sb2Te11 films increases with the increase in thickness of the films. The decrease of the sheet resistivity has been substantiated quantitatively using the classical size-effect theory. These results have been explained on the basis of rearrangements of defects and disorders in the amorphous chalcogenide system.  相似文献   
106.
Tribological efficiency of industrial applications involving boundary lubrication regime can be improved to an appreciable extent by the deposition of hard coatings on interacting surfaces. Among such coatings, diamond-like carbon (DLC) coatings are considered to be one of the most suitable ones for the said role. DLC coatings possess a unique combination of physical, chemical, and material properties due to which they can help in minimizing friction-induced energy and material losses even under starved lubrication conditions. Since commercial lubricants are optimized for steel surfaces, therefore, a lot of experimental investigations were carried out to analyze the tribological compatibility of these lubricants with various DLC coatings. However, there is still a lack of understanding about how DLC coatings interact with conventional lubricant additives. Some researchers reported tribologically beneficial interactions between DLC coatings and formulated lubricants while others observed no such behavior. To address these inconsistencies, there is a need to rearrange the published data in a more apprehensible and organized manner with a special emphasis on the mechanisms responsible for a particular tribological behavior. In this way, it can be determined whether synergistic or antagonistic correlation exists between a particular DLC-lubricant combination and research on DLC coatings can be continued in a logical way. In this article, most widely investigated non-doped DLC coatings (ta-C, a-C:H, a-C, and ta-C:H) are tribologically analyzed. Average values of friction and wear coefficients are calculated for various DLC-lubricant combinations using already published data and compared to quantify the effectiveness of a particular lubricant additive in enhancing tribological characteristics of symmetrical non-doped DLC contacts. Moreover, tribological performance parameters of non-doped DLC coatings are compared with those of doped-DLC coatings to understand differences in their tribological behavior in combination with additives.  相似文献   
107.
A key requirement in the recent development of highly efficient silicon solar cells is the outstanding passivation of their surfaces. In this work, plasma enhanced chemical vapour deposition of a triple layer dielectric consisting of amorphous silicon, silicon oxide and silicon nitride, charged extrinsically using corona, has been used to demonstrate extremely low surface recombination. Assuming Richter's parametrisation for bulk lifetime, an effective surface recombination velocity Seff = 0.1 cm/s at Δn = 1015 cm–3 has been obtained for planar, float zone, n ‐type, 1 Ω cm silicon. This equates to a saturation current density J0s = 0.3 fA/cm2, and a 1‐sun implied open‐circuit voltage of 738 mV. These surface recombination parameters are among the lowest reported for 1 Ω cm c‐Si. A combination of impedance spectroscopy and corona‐lifetime measurements shows that the outstanding chemical passivation is due to the small hole capture cross section for states at the interface between the Si and a‐Si layer which are hydrogenated during nitride deposition. (© 2016 The Authors. Phys. Status Solidi RRL published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
108.
109.
Perforated concrete shows nowadays a high potential for many construction and building engineering applications. This work is devoted to the analysis of the acoustic properties of perforated concrete made from arlite lightweight aggregates. Concrete produced from these materials is an environmentally friendly alternative to traditional materials and offers a higher durability, excellent strength-to-weight ratio and low cost. In particular, it is shown that the acoustic behavior of perforated concrete can be modeled using a dual porosity approach based on the knowledge of the non-acoustic properties of the matrix granular material and geometrical data. To this end, various non-perforated and perforated samples were prepared and characterized in an experimental test facility, their acoustic properties being determined through the transfer function impedance tube method. Experimental and estimated results related to the acoustic properties of a number of prepared specimens are presented, showing a good agreement. Results suggest that this approach is suitable for practical design of such materials as part of noise control systems.  相似文献   
110.
罗习刚  吴涛  陈仙辉 《物理》2017,46(8):499-513
1986年高温铜氧化合物超导体的发现开辟了超导研究的新纪元,人们开始大量探索具有非常规超导机制的新型超导材料,以期发现具有更高超导转变温度的超导体。文章将结合作者多年来的研究,简要介绍具有代表性的非常规超导体材料家族及其物性,以及对非常规超导体材料研究的未来展望。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号