首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4659篇
  免费   872篇
  国内免费   356篇
化学   5471篇
晶体学   12篇
力学   42篇
综合类   6篇
数学   93篇
物理学   263篇
  2024年   1篇
  2023年   12篇
  2022年   43篇
  2021年   55篇
  2020年   113篇
  2019年   100篇
  2018年   85篇
  2017年   131篇
  2016年   162篇
  2015年   434篇
  2014年   454篇
  2013年   469篇
  2012年   446篇
  2011年   468篇
  2010年   422篇
  2009年   397篇
  2008年   420篇
  2007年   360篇
  2006年   313篇
  2005年   275篇
  2004年   271篇
  2003年   220篇
  2002年   84篇
  2001年   51篇
  2000年   29篇
  1999年   24篇
  1998年   9篇
  1997年   8篇
  1996年   2篇
  1995年   5篇
  1994年   4篇
  1993年   2篇
  1992年   8篇
  1991年   1篇
  1990年   1篇
  1988年   5篇
  1985年   2篇
  1979年   1篇
排序方式: 共有5887条查询结果,搜索用时 15 毫秒
161.
162.
The synthesis and characterization of highly ordered three‐dimensional photonic crystals have been the subjects of intense study over the past two decades due to the unique ability of these structures to control light at the nanoscale. Building on that work in recent years, increasing interest is now focused on the unique optical properties of disordered and quasi‐ordered photonic structures. We present a study of the effects of shape anisotropy and disorder on the specular reflection properties of polymer‐based colloidal films comprised of rod‐shaped subunits of varying aspect ratio. We characterize the specular reflectance properties of these films as a function of their increasing levels of disorder, demonstrating progressive transition from resonant reflection to diffuse reflection. The onset of the diffuse reflection is governed by particle size. © 2014 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys. 2014 , 52, 611–617  相似文献   
163.
By the introduction of methoxycarbonyl‐methoxy groups and hydroxyl groups into a pillar structure, a pillararene entirely with two types of functional groups was successfully prepared, which can form a stable 1:1 complex with a bis(imidazolium) salt in CHCl3/acetone solution (V:V=1:1).  相似文献   
164.
《Tetrahedron letters》2019,60(52):151357
In this work, the host–guest interaction between calixpyridinium and the anionic anticancer drug methotrexate disodium was explored in water. Unexpectedly, an interesting anisotropic needle-like rather than an ordinary isotropic spherical supramolecular amphiphilic assembly was fabricated by the complexation of calixpyridinium with methotrexate disodium. It is the second anionic guest to be discovered to form the non-spherical supramolecular assembly upon complexation with calixpyridinium. This discovery implies the possibility to construct various topological nanostructures based on the host–guest interactions between calixpyridinium and the anionic drugs in the future. The resulting calixpyridinium–drug assemblies with different morphologies may have the diverse potentials to adjust the efficacies of anionic drugs.  相似文献   
165.
Six mono/double‐layered 2D and three 3D coordination polymers were synthesized by a self‐assembly reaction of Zn (II) salts, organic dicarboxylic acids and L1/L2 ligands. These polymeric formulas are named as [Zn(L1)(C4H2O4)0.5 (H2O)]n·0.5n(C4H2O4)·2nH2O ( 1 ), [Zn2(L2)(C4H2O4)2]n·2nH2O ( 2 ), [Zn(L1)(m‐BDC)]n ( 3 ), [Zn2(L2)(m‐BDC)2]n·2nH2O ( 4 ), [Zn3(L1)2(p‐BDC)3(H2O)4]n·2nH2O ( 5 ), [Zn2(OH)(L2) (p‐BDC)1.5]n ( 6 ), [Zn2(L1)(p‐BDC)2]n·5nH2O ( 7 ), [Zn2(L2)(p‐BDC)2]n·3nH2O ( 8 ) and [Zn2(L1)(C4H4O4)1.5(H2O)]n·n(ClO4nH2O ( 9 ) [L1 = N,N′‐bis (pyridin‐4‐ylmethyl)propane‐1,2‐diamine, L2 = N,N′‐bis (pyridin‐3‐ylmethyl)propane‐1,2‐ diamine, m‐BDC2? = m‐benzene dicarboxylate, p‐BDC2? = p‐benzene dicarboxylate]. Meanwhile, these polymers have been characterized by elemental analysis, infrared, thermogravimetry (TG), photoluminescence, powder and single‐crystal X‐ray diffraction. Polymers 1–6 present mono‐ and double (4,4)‐layer motifs accomplished by L1/L2 ligands with diverse conformations and organic dicarboxylates, and the layer thickness locates in the range of 5.8–15.0 Å. In three 3D polymers, the L1 and L2 molecules adopt the same cis‐conformations and join adjacent Zn (II) cations together with p‐BDC2? or succinate, giving rise to different binodal (4,4)‐c nets with (4.52.83)(4.53.72) ( 7 ), pts ( 8 ) topology and twofold interpenetrated binodal (5,5)‐c nets with (32.44.52.62)(3.43.52.64) ( 9 ). Therefore, the diverse conformations of the two bis (pyridyl)‐propane‐1,2‐diamines and the feature of different organic dicarboxylate can effectively influence the architectures of these polymers. Powder X‐ray diffraction patterns demonstrate that these bulk solid polymers are pure phase. TG analyses indicate that these polymers have certain thermal stability. Luminescent investigation reveals that the emission maximum of these polymers varies from 402 to 449 nm in the solid state at room temperature. Moreover, 1 , 3 and 5–8 show average luminescence lifetimes from 8.81 to 16.30 ns.  相似文献   
166.
The article describes synthesis and thermally triggered self‐assembly of a Poly (ethylene oxide)‐block‐poly (N‐insopropylacrylamide) (PEO‐b‐PNIPAm) in aqueous medium. At rt, the polymer remains as unimer, however, at lower critical solution temperature (LCST) of PNIPAm (32 °C), it forms a rather large undefined aggregate which at slightly elevated temperature (~40 °C) converges to well defined polymersome structure (Critical aggregation concentration = 0.45 mg/mL) with hydrodynamic diameter of 40–50 nm. By lowering the temperature, initial swelling of the compact vesicle followed by reversible disassembly to unimer was noticed. The polymersome exhibits encapsulation ability to a hydrophilic dye Calcein which can be spontaneously released by lowering the temperature below cloud point. Likewise a hydrophobic dye namely 8‐Anilino‐1‐naphthalenesulfonic acid (ANS) can also be encapsulated and released by thermal trigger. Detail photoluminescence studies reveal ANS dye can be used as a generalized probe molecule for detecting LCST of a thermoresponsive polymer by “fluorescence on” above LCST even by cursory observation. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2444–2451  相似文献   
167.
A series of well‐defined thermoresponsive graft polymers with different lengths and graft densities, poly(glycidyl methacrylate)‐graft‐poly(N‐isopropylacrylate) (PGMA‐g‐PNIPAM), were successfully prepared by combination of controlled/living free radical polymerization and click chemistry. Effects of grafting length and density on the thermoresponsive behavior, aggregating mean diameter, and self‐assembly morphology are systematically investigated. The thermosensitive characteristics of graft polymers in aqueous solution prove that the length and graft density had positive co‐relationship with the lower critical solution temperature value and mean diameter of micelles as well as the size distribution, while the effect of graft length of polymers is more significant than that of density. Transmission electron microscopy analysis shows that the conformations of PGMA45g‐PNIPAM20 and PGMA45g‐PNIPAM46 with longer length and bigger grafting density in aqueous solutions are spherical nanoparticles with the increasing trend of the diameters, while that of PGMA45g‐PNIPAM(73, 50%) shows a spherical‐like morphology, which indicates that the graft length and density have a significant effect on the mean diameter of micelle but not on the self‐assembly morphology. These results reveal that to obtain desired thermoresponsive behavior and self‐assembly morphology of functional polymers, it is essential to design and fabricate the structure of graft polymers with proper length and graft density. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2442–2453  相似文献   
168.
We demonstrate that the volume phase transition temperature (VPTT) of copolymer microgel particles made from N‐isopropylacrylamide (NIPAm) and methacryloyl hydrazide (MH) can be tailored in a reversible manner upon the reaction of the hydrazide functional groups with aldehydes. The microgels were synthesized by precipitation polymerization in water. Due to the water‐soluble nature of the MH monomer, the VPTT at which the microgel particles contract shifts to higher values by increasing the incorporated amounts of methacryloyl hydrazide from 0 to 5.0 mol %. The VPTT of the copolymer microgel dispersions in water can be fine‐tuned upon addition of hydrophobic/hydrophilic aldehydes, which react with the hydrazide moiety to produce the hydrazone analogue. This hydrazone formation is reversible, which allows for flexible, dynamic control of the thermo‐responsive behavior of the microgels. The ability to “switch” the VPTT was demonstrated by exposing hydrophilic streptomycin sulfate salt incubated microgel particles to an excess of a hydrophobic aldehyde, that is benzaldehyde. The temperature at which these microgels contracted in size upon heating was markedly lowered in these aldehyde exchange experiments. Transformation into benzaldehyde hydrazone derivatives led to assembly of the microgel particles into small colloidal clusters at elevated temperatures. This control of supracolloidal cluster formation was also demonstrated with polystyrene particles which had a hydrazide functionalised microgel shell. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1745–1754  相似文献   
169.
Poly(vinylidene fluoride) (PVDF) has reached the second largest production volume of fluoropolymers in recent years, and its popularity can be ascribed to high thermal stability and chemical inertness combined with its ferroelectric behavior. Copolymerization of vinylidene fluoride with other monomers leads to a wide variety of products with modified or improved properties. Besides commercially available fluorinated random copolymers, well‐defined block‐, graft, and alternating copolymers based on PVDF received more attention in recent years. PVDF‐containing block copolymers that may self‐assemble into well‐ordered morphologies are of particular interest, being potential precursors for functional nanostructured materials applicable in membranes and electronics. This Highlight provides an overview of the routes developed towards these materials via conventional and controlled polymerization techniques. In addition, it discusses their nanoscopic phase behavior and current and potential applications. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2861–2877  相似文献   
170.
Insulin is a small protein crucial for regulating the blood glucose level in all animals. Since 1922 it has been used for the treatment of patients with diabetes. Despite consisting of just 51 amino acids, insulin contains 17 of the proteinogenic amino acids, A- and B-chains, three disulfide bridges, and it folds with 3 α-helices and a short β-sheet segment. Insulin associates into dimers and further into hexamers with stabilization by Zn2+ and phenolic ligands. Selective chemical modification of proteins is at the forefront of developments in chemical biology and biopharmaceuticals. Insulin's structure has made it amenable to organic and inorganic chemical reactions. This Review provides a synthetic organic chemistry perspective on this small protein. It gives an overview of key chemical and physico-chemical aspects of the insulin molecule, with a focus on chemoselective reactions. This includes N-acylations at the N-termini or at LysB29 by pH control, introduction of protecting groups on insulin, binding of metal ions, ligands to control the nano-scale assembly of insulin, and more.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号