首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13282篇
  免费   1860篇
  国内免费   1164篇
化学   9032篇
晶体学   494篇
力学   1632篇
综合类   47篇
数学   600篇
物理学   4501篇
  2024年   46篇
  2023年   186篇
  2022年   431篇
  2021年   450篇
  2020年   759篇
  2019年   510篇
  2018年   445篇
  2017年   482篇
  2016年   754篇
  2015年   730篇
  2014年   786篇
  2013年   1030篇
  2012年   690篇
  2011年   856篇
  2010年   757篇
  2009年   770篇
  2008年   853篇
  2007年   862篇
  2006年   777篇
  2005年   608篇
  2004年   614篇
  2003年   581篇
  2002年   415篇
  2001年   342篇
  2000年   273篇
  1999年   207篇
  1998年   197篇
  1997年   141篇
  1996年   137篇
  1995年   80篇
  1994年   86篇
  1993年   68篇
  1992年   65篇
  1991年   58篇
  1990年   45篇
  1989年   34篇
  1988年   23篇
  1987年   24篇
  1986年   25篇
  1985年   18篇
  1984年   19篇
  1983年   20篇
  1982年   19篇
  1981年   8篇
  1980年   2篇
  1979年   6篇
  1978年   4篇
  1977年   3篇
  1971年   6篇
  1957年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
992.
The term “cyborg” refers to a cybernetic organism, which characterizes the chimera of a living organism and a machine. Owing to the widespread application of intracorporeal medical devices, cyborgs are no longer exclusively a subject of science fiction novels, but technically they already exist in our society. In this review, we briefly summarize the development of modern prosthetics and the evolution of brain–machine interfaces, and discuss the latest technical developments of implantable devices, in particular, biocompatible integrated electronics and microfluidics used for communication and control of living organisms. Recent examples of animal cyborgs and their relevance to fundamental and applied biomedical research and bioethics in this novel and exciting field at the crossroads of chemistry, biomedicine, and the engineering sciences are presented.  相似文献   
993.
994.
995.
Conditions for the synthesis of aluminum organophosphonate (AOP) and aluminophosphate (AlPO) spheres containing periodic mesopores were optimized and demonstrated to be general morphological controls for the surfactant‐assisted synthesis of mesoporous materials. High‐quality AOP and AlPO spheres with uniform mesopores were obtained at low and high temperatures, respectively. The aerosol‐assisted synthesis of materials with uniform mesopores was categorized by using the difference in relative density of soluble AOP and AlPO oligomers that interact with ethylene oxide (EO) units in EOnPOmEOn triblock copolymer (PO=propylene oxide). Then, ordered mesoporous structures are constructed with the adequate amount of species in resultant frameworks, and the number of interactive points in soluble species determines the resultant density of the frameworks after self‐assembly. Consequently, temperature‐dependent synthesis, which allows controlled infiltration of soluble species to match the density of resultant frameworks, is required for the formation of ordered mesoporous structures under morphological control.  相似文献   
996.
A solvothermal post‐treatment method was developed to synthesize Fe3O4@mesosilica core–shell nanospheres (CSNs) with a well‐preserved morphology, mesoporous structure, and tunable large pore diameters (2.5–17.6 nm) for the first time. N,N‐Dimethylhexadecylamine (DMHA), which was generated in situ during the heat‐treatment process, was mainly responsible for this pore‐size enlargement, as characterized by NMR spectroscopy. This pore‐size expansion can be strengthened with the aid of hexamethyldisilazane (HMDS), whilst the nature of the surface of the Fe3O4@mesosilica CSNs can be easily modified with trimethylsilyl groups during the pore‐size‐expansion process. The hydrophobicity of the Fe3O4@mesosilica CSNs increased for the enlarged mesopores and the adsorption capacity of these CSNs for benzene (up to 1.5 g g?1) is the highest ever reported for Fe3O4@mesosilica CSNs. The resultant Fe3O4@mesosilica CSNs (pore size: 10 nm) showed a 3.6‐times higher adsorption capacity of lysozyme than those without the pore expansion (pore size: 2.5 nm), thus making them a good candidate for loading large molecules.  相似文献   
997.
We report two new 3D structures, [Zn3(bpdc)3(2,2′‐dmbpy)] (DMF)x(H2O)y ( 1 ) and [Zn3(bpdc)3(3,3′‐dmbpy)]?(DMF)4(H2O)0.5 ( 2 ), by methyl functionalization of the pillar ligand in [Zn3(bpdc)3(bpy)] (DMF)4?(H2O) ( 3 ) (bpdc=biphenyl‐4,4′‐dicarboxylic acid; z,z′‐dmbpy=z,z′‐dimethyl‐4,4′‐bipyridine; bpy=4,4′‐bipyridine). Single‐crystal X‐ray diffraction analysis indicates that 2 is isostructural to 3 , and the power X‐ray diffraction (PXRD) study shows a very similar framework of 1 to 2 and 3 . Both 1 and 2 are 3D porous structures made of Zn3(COO)6 secondary building units (SBUs) and 2,2′‐ or 3,3′‐dmbpy as pillar ligand. Thermogravimetric analysis (TGA) and PXRD studies reveal high thermal and water stability for both compounds. Gas‐adsorption studies show that the reduction of surface area and pore volume by introducing a methyl group to the bpy ligand leads to a decrease in H2 uptake for both compounds. However, CO2 adsorption experiments with 1′ (guest‐free 1 ) indicate significant enhancement in CO2 uptake, whereas for 2′ (guest‐free 2 ) the adsorbed amount is decreased. These results suggest that there are two opposing and competitive effects brought on by methyl functionalization: the enhancement due to increased isosteric heats of CO2 adsorption (Qst), and the detraction due to the reduction of surface area and pore volume. For 1′ , the enhancement effect dominates, which leads to a significantly higher uptake of CO2 than its parent compound 3′ (guest‐free 3 ). For 2′ , the detraction effect predominates, thereby resulting in reduced CO2 uptake relative to its parent structure 3′ . IR and Raman spectroscopic studies also present evidence for strong interaction between CO2 and methyl‐functionalized π moieties. Furthermore, all compounds exhibit high separation capability for CO2 over other small gases including CH4, CO, N2, and O2.  相似文献   
998.
Graphene is a 2D sp2‐hybridized carbon sheet and an ideal material for the adsorption‐based separation of organic pollutants. However, such potential applications of graphene are largely limited, owing to their poor solubility and extensive aggregation properties through graphene? graphene interactions. Herein, we report the synthesis of graphene‐based composites with γ‐Fe2O3 nanoparticle for the high‐performance removal of endocrine‐disrupting compounds (EDC) from water. The γ‐Fe2O3 nanoparticles partially inhibit these graphene? graphene interactions and offer water dispersibility of the composite without compromising much of the high surface area of graphene. In their dispersed form, the graphene component offers the efficient adsorption of EDC, whilst the magnetic iron‐oxide component offers easier magnetic separation of adsorbed EDC.  相似文献   
999.
Silanol groups on a silica surface affect the activity of immobilized catalysts because they can influence the hydrophilicity/hydrophobicity, matter transfer, or even transition state in a catalytic reaction. Previously, these silanol groups have usually been passivated by using surface‐passivation reagents, such as alkoxysilanes, bis‐silylamine reagents, chlorosilanes, etc., and surface passivation has typically been found in mesoporous‐silicas‐supported molecular catalysts and heteroatomic catalysts. However, this property has rarely been reported in mesoporous‐silicas‐supported metal‐nanoparticle catalysts. Herein, we prepared an almost‐superhydrophobic SBA‐15‐supported gold‐nanoparticle catalyst by using surface passivation, in which the catalytic activity increased more than 14 times for the reduction of nitrobenzene compared with non‐passivated SBA‐15. In addition, this catalyst can selectively catalyze hydrophobic molecules under our experimental conditions, owing to its high (almost superhydrophobic) hydrophobic properties.  相似文献   
1000.
Core–shell‐structured mesoporous silica spheres were prepared by using n‐octadecyltrimethoxysilane (C18TMS) as the surfactant. Hollow mesoporous carbon spheres with controllable diameters were fabricated from core–shell‐structured mesoporous silica sphere templates by chemical vapor deposition (CVD). By controlling the thickness of the silica shell, hollow carbon spheres (HCSs) with different diameters can be obtained. The use of ethylene as the carbon precursor in the CVD process produces the materials in a single step without the need to remove the surfactant. The mechanism of formation and the role played by the surfactant, C18TMS, are investigated. The materials have large potential in double‐layer supercapacitors, and their electrochemical properties were determined. HCSs with thicker mesoporous shells possess a larger surface area, which in turn increases their electrochemical capacitance. The samples prepared at a lower temperature also exhibit increased capacitance as a result of the Brunauer–Emmett–Teller (BET) area and larger pore size.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号