首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2306篇
  免费   350篇
  国内免费   388篇
化学   2083篇
晶体学   67篇
力学   289篇
综合类   31篇
数学   17篇
物理学   557篇
  2024年   3篇
  2023年   24篇
  2022年   62篇
  2021年   88篇
  2020年   113篇
  2019年   90篇
  2018年   66篇
  2017年   78篇
  2016年   117篇
  2015年   110篇
  2014年   114篇
  2013年   209篇
  2012年   143篇
  2011年   144篇
  2010年   133篇
  2009年   131篇
  2008年   144篇
  2007年   146篇
  2006年   142篇
  2005年   131篇
  2004年   134篇
  2003年   121篇
  2002年   127篇
  2001年   74篇
  2000年   76篇
  1999年   40篇
  1998年   52篇
  1997年   45篇
  1996年   46篇
  1995年   31篇
  1994年   26篇
  1993年   18篇
  1992年   14篇
  1991年   16篇
  1990年   8篇
  1989年   4篇
  1988年   8篇
  1987年   3篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1980年   1篇
  1979年   1篇
  1975年   2篇
  1973年   2篇
  1972年   1篇
排序方式: 共有3044条查询结果,搜索用时 234 毫秒
101.
Understanding the key steps that drive the laser-based synthesis of colloids is a prerequisite for learning how to optimize the ablation process in terms of nanoparticle output and functional design of the nanomaterials. Even though many studies focus on cavitation bubble formation using single-pulse ablation conditions, the ablation efficiency and nanoparticle properties are typically investigated under prolonged ablation conditions with repetition rate lasers. Linking single-pulse and multiple-pulse ablation is difficult due to limitations induced by gas formation cross-effects, which occur on longer timescales and depend on the target materials’ oxidation-sensitivity. Therefore, this study investigates the ablation and cavitation bubble dynamics under nanosecond, single laser pulse conditions for six different bulk materials (Au, Ag, Cu, Fe, Ti, and Al). Also, the effective threshold fluences, ablation volumes, and penetration depths are quantified for these materials. The thermal and chemical properties of the corresponding bulk materials not only favor the formation of larger spot sizes but also lead to the highest molar ablation efficiencies for low melting materials such as aluminum. Furthermore, the concept of the cavitation bubble growth linked with the oxidation sensitivity of the ablated material is discussed. With this, evidence is provided that intensive chemical reactions occurring during the very early timescale of ablation are significantly enhanced by the bubble collapse.  相似文献   
102.
《Analytical letters》2012,45(18):2892-2904
A spectrofluorimetric method has been developed for trace amount of aluminum(III) by using a novel Schiff base, N,N′-bis(salicylidene)-1,4-diaminobuthane (BUTAS), and 4-methyl-2-aminophenol (OAP). Since the aluminum complexes are generally fluorescent, aluminum(III) increases the fluorescence intensity of BUTAS-OAP by formation of Al-BUTAS-OAP complex. The fluorescence of the complex is measured at an excitation wavelength of 410 nm with an emission at 526 nm. Aluminum(III) can be detected within a concentration limit of 0.11–1.62 ppb and the lowest detection limit being 0.07 ppb. The proposed method was applied to diluted hemodialysis solution and spectrofluorimetric data was compared with data of standard pharmacopoeia method.  相似文献   
103.
Reaction of (TBBP)AlMe ? THF with [Cp*2Zr(Me)OH] gave [(TBBP)Al(THF)?O?Zr(Me)Cp*2] (TBBP=3,3’,5,5’‐tetra‐tBu‐2,2'‐biphenolato). Reaction of [DIPPnacnacAl(Me)?O?Zr(Me)Cp2] with [PhMe2NH]+[B(C6F5)4]? gave a cationic Al/Zr complex that could be structurally characterized as its THF adduct [(DIPPnacnac)Al(Me)?O?Zr(THF)Cp2]+[B(C6F5)4]? (DIPPnacnac=HC[(Me)C=N(2,6‐iPr2?C6H3)]2). The first complex polymerizes ethene in the presence of an alkylaluminum scavenger but in the absence of methylalumoxane (MAO). The adduct cation is inactive under these conditions. Theoretical calculations show very high energy barriers (ΔG=40–47 kcal mol?1) for ethene insertion with a bridged AlOZr catalyst. This is due to an unfavorable six‐membered‐ring transition state, in which the methyl group bridges the metal and ethene with an obtuse metal‐Me‐C angle that prevents synchronized bond‐breaking and making. A more‐likely pathway is dissociation of the Al‐O‐Zr complex into an aluminate and the active polymerization catalyst [Cp*2ZrMe]+.  相似文献   
104.
105.
A novel hydroxy‐, methoxy‐, and phenoxy‐bridge “Mitsubishi emblem” tetranuclear aluminum complex ( 1 ) is synthesized from an unsymmetric amine‐pyridine‐bis(phenol) N2O2‐ligand (H2L1) and a symmetric amine‐tris(phenol) NO3‐ligand (H2L2). Two same configuration chiral nitrogen atoms are formed in the tetranuclear Al complex upon coordination of the unsymmetric tertiary amine ligand to central Al. Complex 1 initiates controlled ring‐opening polymerization (ROP) of rac‐lactide and afford polylactide (PLA) with narrow molecular weight distributions (Mw/Mn = 1.05–1.19). The analysis of 1H NMR spectra of the oligomer indicates that the methoxy group is the initiating group and the ring‐opening polymerization of lactide follows a coordination‐insertion mechanism. The Homonuclear decoupled 1H NMR spectroscopy suggests the isotactic‐rich chains is preferentially formed in PLA. The study on kinetics of the ROP of lactide reveals the homopropagation rate is higher than the cross‐propagation rate, which is in agreement with the observed isotactic selectivity in the ROP of rac‐lactide. The stereochemistry of the polymerization was also supported by activation parameters. The introduction of unsymmetric ligand H2L1 has an effect on stereoslectivity of polymerization. This result may be of interest for the design of multinuclear metal complex catalysts containing functionalized ligands. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2084–2091  相似文献   
106.
Acrylate and methacrylate monomers absorbent acrylate foams were prepared based on the method of high internal phase emulsion (HIPE). The influence of reaction conditions on liquid absorption by acrylate foams was studied. The reaction conditions included monomer ratio, cross-linker amount, initiator amount, emulsifier amount, emulsion concentration, emulsification temperature, and the curing time. The reaction conditions were determined to achieve the best liquid absorption by acrylate foams. Acrylate foams were analyzed with Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The results showed that when the monomer ratio was 9:1, cross-linking agent was 30% of monomer amount, initiator amount was 4% of the reactants amount, emulsifier amount was 8% of the reactants amount, the ratio of aqueous phase to oil phase was 32:1, emulsification temperature was 75°C, and curing time was 1.5 h, we could prepare the acrylate foam material with the best liquid absorption. Reaction of monomer and cross-linking agent was confirmed by FTIR analysis. The pore sizes of acrylate foam were between 1 μm and 8 μm according to SEM analysis. This material was very suitable to absorb aqueous fluids.  相似文献   
107.
108.
Water blown rigid polyurethane foams (PUF) with organoclay/organically modified nanoclay (ONC) were prepared and their properties such as density, mechanical, morphological, insulation, thermal and flame retardant properties were studied. In this investigation, the ONC content was varied from 1 to 10 parts per hundred of polyol (php) by weight. It was observed that the compressive strength of ONC filled PUF increased up to 3 php of ONC loading and then it decreased. Wide angle X-ray diffraction and transmission electron microscopy studies indicated the exfoliated dispersion of ONC in PUF. The thermal conductivity of ONC filled PUF decreases up to 5 php and then increases. The glass transition temperature (Tg) of PUF decreases on loading of ONC. The TGA analysis shows that there is slight increase in degradation temperature with increase in ONC loading. The flame retardant properties (LOI and flame spread rate) are improved slightly on addition (3 php) of ONC filled PUF.  相似文献   
109.
110.
对炭泡沫为支撑骨架的氧化硅气凝胶(SiO2/炭泡沫)和碳化硅(SiC/炭泡沫)复合材料分别采用XRD、SEM、激光导热仪、万能力学试验机进行物相、微观结构、热学及力学性能方面的表征.结果表明:所制备的SiO2/炭泡沫与原炭泡沫相比,具备更高的抗压强度(14.95 MPa)和更低的室温热导率(0.44 W·m-1·K-1).SiC/炭泡沫材料则保持了较高的抗压强度值(14.66 MPa),其在 1 200 ℃下具备极低的高温热导率(2.18W·m-1·K-1).热重分析表明,SiC/炭泡沫在氧化氛围中到610 ℃才发生质量的损失,而内部炭发生完全烧蚀的温度高达844 ℃,这表明该材料的抗氧化性能远好于纯的炭泡沫材料.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号