首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   158篇
  免费   9篇
  国内免费   6篇
化学   76篇
力学   14篇
数学   1篇
物理学   82篇
  2023年   3篇
  2022年   2篇
  2021年   3篇
  2020年   3篇
  2019年   2篇
  2018年   2篇
  2017年   3篇
  2016年   2篇
  2015年   6篇
  2014年   4篇
  2013年   22篇
  2012年   7篇
  2011年   5篇
  2010年   8篇
  2009年   5篇
  2008年   8篇
  2007年   12篇
  2006年   18篇
  2005年   17篇
  2004年   13篇
  2003年   1篇
  2002年   4篇
  2001年   5篇
  2000年   1篇
  1999年   4篇
  1998年   4篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1991年   1篇
  1990年   1篇
  1984年   2篇
  1983年   1篇
排序方式: 共有173条查询结果,搜索用时 15 毫秒
31.
Total aerosol scattering and backscattering atmospheric values are typically obtained with an integrating nephelometer. Due to design limitations, measurements do not cover the full (0°–180°) angular range, and correction factors are necessary. The effect of angle cutoff is examined for a number of particle size distributions and refractive indices. Scattering data for sub-micron particles can be corrected by the use of a modified Anderson approximation, while data for larger particle distributions can be approximated by a function of the effective size parameter. Correction factors for the hemispheric backscatter ratio are found to be small if nonsphericity is assumed. Such approximations will help more accurate corrections for angle range, particularly at large size parameter values.  相似文献   
32.
The development of a unified satellite climatology of aerosol properties requires accurate quantification and deep understanding of the underlying factors contributing to discrepancies between individual satellite products. In this paper we compare the most recent level 2 results obtained for coincident pixels viewed at essentially the same time by the Moderate Resolution Imaging Spectroradiometer (MODIS) and Multiangle Imaging Spectroradiometer (MISR) instruments flown on the EOS Terra platform. This strategy eliminates potential sampling effects and provides a virtually direct comparison of spatially and temporally collocated MODIS and MISR retrievals. We show that the MODIS and MISR Ångström exponent datasets reveal essentially no correlation. Although the corresponding aerosol optical thickness (AOT) datasets can agree worse than expected over the oceans, still the agreement is often satisfactory. However, the agreement over the land is often poor or even unacceptable. Of the collocated pixels for which there is a MODIS aerosol retrieval, only ∼40% or fewer pixels have a MISR aerosol retrieval, and vice versa. These findings further illustrate the complexity of the problem of aerosol retrievals from satellite observations and indicate that the creation of a meaningful unified MODIS-MISR aerosol climatology will be a nontrivial task.  相似文献   
33.
Molecular‐level airborne sensing is critical for early prevention of disasters, diseases, and terrorism. Currently, most 2D surface‐enhanced Raman spectroscopy (SERS) substrates used for air sensing have only one functional surface and exhibit poor SERS‐active depth. “Aerosolized plasmonic colloidosomes” (APCs) are introduced as airborne plasmonic hotspots for direct in‐air SERS measurements. APCs function as a macroscale 3D and omnidirectional plasmonic cloud that receives laser irradiation and emits signals in all directions. Importantly, it brings about an effective plasmonic hotspot in a length scale of approximately 2.3 cm, which affords 100‐fold higher tolerance to laser misalignment along the z‐axis compared with 2D SERS substrates. APCs exhibit an extraordinary omnidirectional property and demonstrate consistent SERS performance that is independent of the laser and analyte introductory pathway. Furthermore, the first in‐air SERS detection is demonstrated in stand‐off conditions at a distance of 200 cm, highlighting the applicability of 3D omnidirectional plasmonic clouds for remote airborne sensing in threatening or inaccessible areas.  相似文献   
34.
This paper describes the development and optimization, by using multivariate analysis, of a GC-MS-SIM method for evaluation of the 16 polyaromatic hydrocarbons considered as priority pollutants in atmospheric particulate material by the US EPA. In order to assure an adequate separation in the shortest analysis time, a multivariate design was used to set the conditions of the oven temperature program. The optimization process was carried out using factorial fractional design and Box-Behnken design. The following factors were evaluated: initial temperature, temperature rate #1, intermediary temperature, temperature rate #2, and final temperature. The optimized conditions were set at: 70 degrees C (2 min) --> 200 degrees C (30 degrees C/min, 5 min) --> 300 degrees C (5 degrees C/min, 1.67 min). Moreover, we have also optimized the injector temperature as 310 degrees C and sampling time as 0.8 min. The total analysis time was 33 min. Validation of GC-MS-SIM yielded satisfactory results for repetitivity of the detector response and retention times, and linearity of calibration curves. LOD were established as 0.13-0.34 ng/mL (peak area) and 0.18-0.72 ng/mL (peak height). The method has been shown to be appropriate for the analysis of samples of atmospheric particulate material and/or other environmental matrices.  相似文献   
35.
In to order increase sensitivity and to reduce the background induced by matrix effects, a method was developed that uses flash chromatography to separate various compounds present in atmospheric aerosol samples prior to their analysis with different analytical techniques (GC–MS, GC–FID, HPLC). For this purpose, flash chromatography using a 4 g silica gel column crossed by eluent at a flow rate of 20 mL min−1 was used. An eluent with enhanced polarity is needed to separate nonpolar (linear and branched alkanes), semipolar (PAH, nitro-PAH and cholesterol) and polar (methoxyphenols, alkanoic acids, and levoglucosan) compounds. Three combinations of solvents were used: hexane for the nonpolar fraction (F1), toluene/hexane for the semipolar fraction (F2) and dimethylformamide for the polar fraction (F3). The use of different eluents for each fraction allows separation of the sample to be accomplished with good repeatability and satisfying yields [85 ± 5% for F1, 81 ± 8% (PAHs), 89 ± 6% (nitro-PAHs) and 74 ± 7% (cholesterol) for F2 and 79 ± 7% (n-alkanoic acids), 40 ± 11% (methoxyphenols) and 77 ± 6% (levoglucosan) for F3]. The methoxyphenol yields were low due to losses during the concentration/evaporation step. This method was then applied to analyse the organic composition of particles collected at an urban site in Strasbourg (France).  相似文献   
36.
The secondary ion mass spectrometry method (ToF-SIMS) has been applied to the analysis of some mineral and organic species on the surface layers of airborne urban particulates. Particulate matter was collected on aluminum sheets of the 8-stage Anderson type cascade impactor from three different sampling sites in the city of Lodz, Poland, which were different in terms of aerosol source apportionment. The obtained results show that vehicle combustion products occur mainly in fine fraction with aerodynamic diameters below 1μm. The main contribution to the mineral components comes from direct and traffic related soil resuspension.   相似文献   
37.
The interaction of fluid mechanics and particle dynamics at the very early stages of flame synthesis largely affects the characteristics of the product powder. Detailed simulations provide a better understanding of these processes, which take place in a few milliseconds, and offer the possibility to influence the product characteristics by intelligent selection of the process parameters. The present paper reports on the simulation of titania powder formation by TiCl4 oxidation in an aerosol flow reactor. A commercially available fluid mechanics code is used for the detailed calculation of the fluid flow and the chemical reaction at non-isothermal conditions. This code is then interfaced with a model for aggregate particle dynamics neglecting the spread of the particle size distribution. The simulation shows the onset of the particle formation in the reactor and calculates the dynamic evolution of the aggregate particle size, number of primary particles per aggregate and the specific surface area throughout the reactor. The presented, newly developed calculation technique allows for the first time the simulation of particle formation processes under the authentic, complex conditions as found in actual aerosol reactors.  相似文献   
38.
We consider the coagulation of an aerosol embedded in a stationary atmosphere of bipolar ions. Particles respond to the ionic environment by developing an instantaneous charge the fluctuations of which may produce attraction or repulsion between the particles. The governing parameter is the charge asymmetry factor which quantifies the relative charging efficiency of positive and negative ions. We use a Monte Carlo method to solve the coagulation equation in the free-molecule regime. We perform simulations for conditions ranging from symmetric and nearly symmetric environments (e.g. flames, ionizers), which result in particles that are on the average neutral to highly asymmetric conditions (low-pressure plasmas), which produce a substantial non-zero net charge. In symmetric ionic atmospheres we find that electrostatic interactions are unimportant and particles grow as if in the absence of charging ions. In asymmetric bipolar atmospheres, electrostatic interactions between particles are repulsive, the mean particle size grows logarithmically in time and the resulting size distributions are significantly narrower than the classical self preserving distributions.  相似文献   
39.
Chemical composition, hourly counts, and sizes of atmospheric carbonaceous particles were measured to investigate their mixing state on clear and hazy days. 623,122 carbonaceous particles with sizes 0.2–2.0 μm was analyzed using a single-particle aerosol mass spectrometer from 1st to 17th January 2013. Particle types included biomass/biofuel burning particles (biomass), element carbon (EC-dominant) particles that were also mixed with biomass/biofuel burning species (EC-biomass) or secondary species (EC-secondary), organic carbon (OC), internally mixed OC and EC (OCEC), ammonium-containing (ammonium) and sodium-containing (sodium) particles. On clear days the top ranked carbonaceous particle types were biomass (48.2%), EC-biomass (15.7%), OCEC (11.1%), and sodium (9.6%), while on hazy days they were biomass (37.3%), EC-biomass (17.6%), EC-secondary (16.6%), and sodium (12.7%). The fractions of EC-secondary, ammonium (10%), and sodium particle types were elevated on hazy days. Numbers of EC-secondary particles were more than four times those on clear days (4.1%). Thus, carbonaceous particles mixed with ammonium, nitrate and sulfate during aging and transport, enhancing their light extinction effects and hygroscopic growth under high relative humidity on hazy days, further reducing visibility. Our real-time single-particle data showed that changes to mixing state had a significant impact on light extinction during haze events in Nanjing.  相似文献   
40.
Quantitative absorption spectra for several hydrocarbon fuels in the liquid phase at are presented. Measurements of toluene, n-dodecane, n-decane, and three samples of gasoline were made over the spectral region 2700–3200 to support the development of mid-infrared laser-absorption diagnostics for measurements of fuel vapor in the presence of liquid films and aerosols. A procedure for quantitative Fourier transform infrared (FTIR) absorption measurements of strongly absorbing liquids is described and the resulting absorption spectra are compared with previously measured absorption spectra in the vapor phase. The measured absorption spectra for liquid gasoline are shown to scale with the volume percent of olefin, alkane, and aromatic hydrocarbons in each sample. Finally, the observed frequency shift of in the spectra of vapor and liquid hydrocarbons is discussed, including the potential for measurements of fuel vapor in the presence of liquid films.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号