首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   183篇
  免费   15篇
  国内免费   3篇
力学   158篇
数学   8篇
物理学   35篇
  2022年   4篇
  2021年   2篇
  2020年   9篇
  2019年   3篇
  2018年   4篇
  2017年   5篇
  2016年   12篇
  2015年   9篇
  2014年   19篇
  2013年   16篇
  2012年   17篇
  2011年   8篇
  2010年   6篇
  2009年   3篇
  2008年   6篇
  2007年   5篇
  2006年   5篇
  2005年   11篇
  2004年   7篇
  2003年   12篇
  2002年   1篇
  2001年   3篇
  2000年   5篇
  1999年   5篇
  1998年   4篇
  1997年   5篇
  1996年   1篇
  1995年   1篇
  1994年   3篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
排序方式: 共有201条查询结果,搜索用时 15 毫秒
31.
Based on the unsteady aerodynamics experiment (UAE) phase VI and the model experiment in controlled conditions (MEXICO) projects and the related research carried out in China Aerodynamic Research and Development Center (CARDC), the recent progress in the wind tunnel experimental techniques for the wind turbine is summarized. Measurement techniques commonly used for different types of wind tunnel experiments for wind turbine are reviewed. Important research achievements are discussed, such as the wind tunnel disturbance, the equivalence of the airfoil inflow condition, the three-dimensional (3D) effect, the dynamic inflow influence, the flow field structure, and the vortex induction. The corresponding research at CARDC and some ideas on the large wind turbine are also introduced.  相似文献   
32.
Piston theory may be used in the high Mach number supersonic flow region and/or in very high frequency subsonic or supersonic flow. In this flow model, the pressure at a point on the fluid-solid interface only depends on the downwash at the same point. However the classical piston theory may not be sufficient for some phenomena in aeroelasticity and aeroacoustics (far field prediction). Dowell and Bliss have created an extension of piston theory that allows for higher order effects that take into account the effect the distribution of downwash on pressure at any point. For simple harmonic motion, expansions in reduced frequency, inverse reduced frequency and/or inverse (square of) Mach number have all been created; The effects of higher order terms in these several expansion in creating an enhanced piston theory was illustrated for plunge and pitch motion of an airfoil (discrete system) by Ganji and Dowell. In the present paper, flutter prediction for a flexible panel in two –dimensional flow is investigated using enhanced piston theory. The goal of the present paper is to demonstrate that an enhance version of piston theory can analyze single degree of freedom flutter of a panel as compared to the classical piston theory and quasi-steady aerodynamic models which can only treat coupled mode flutter.  相似文献   
33.
ABSTRACT

The side-wind loading on a simplified train model at scale 1:25 is investigated by parallel large eddy simulation (LES) with incompressible solvers from the OpenFOAM package and a novel dynamically adaptive, parallel LES-type lattice Boltzmann method (LBM) implemented in our own AMROC framework. It is found that the new LBM code provides more accurate time-averaged force predictions, while compute times are reduced.  相似文献   
34.
以小展弦比飞翼式无人机为对象,开展了基于零质量射流的主动流动控制数值模拟研究. 比较分析了应用零质量射流前后飞翼式无人机纵向气动特性的改善效果,并通过流场特征的分析探讨了流动控制技术产生气动增益的原因. 研究结果表明在模型中等迎角、大迎角范围,零质量射流技术可以显著增加升力系数,最大幅值达25%,并且拓宽了纵向力矩的线性范围. 机理分析表明,零质量射流扰动通过提高模型绕流场的边界层掺混,增强附面层内外的动量输运,使得附面层有足够的能量克服逆压梯度和黏性损耗,从而达到减缓流动分离甚至使分离流再附的目的.  相似文献   
35.
This paper presents a parametric reduced-order model (ROM) based on manifold learning (ML) for use in steady transonic aerodynamic applications. The main objective of this work is to derive an efficient ROM that exploits the low-dimensional nonlinear solution manifold to ensure an improved treatment of the nonlinearities involved in varying the inflow conditions to obtain an accurate prediction of shocks. The reduced-order representation of the data is derived using the Isomap ML method, which is applied to a set of sampled computational fluid dynamics (CFD) data. In order to develop a ROM that has the ability to predict approximate CFD solutions at untried parameter combinations, Isomap is coupled with an interpolation method to capture the variations in parameters like the angle of attack or the Mach number. Furthermore, an approximate local inverse mapping from the reduced-order representation to the full CFD solution space is introduced. The proposed ROM, called Isomap+I, is applied to the two-dimensional NACA 64A010 airfoil and to the 3D LANN wing. The results are compared to those obtained by proper orthogonal decomposition plus interpolation (POD+I) and to the full-order CFD model.  相似文献   
36.
Aeroelastic measurements of a three-dimensional wing model, the so-called Aerostabil wing, were conducted in the Transonic Windtunnel Göttingen. This clean, backward-swept wing allowed the experimental investigation of limit cycle oscillations in a certain transonic parameter range. In this paper, a detailed insight into the observed physical phenomena, especially the measured limit cycle oscillations, is presented by means of CFD–CSM coupled simulations. These simulations on the basis of a detailed structural finite element model reveal the specific properties of the Aerostabil wing and furthermore allow investigating the unstable behavior of this windtunnel model for transonic flow settings. The aerodynamic characteristics include a two-shock system and large flow separation areas, further increasing the complexity of the aeroelastic problem. A structural single degree-of-freedom system is used for the prediction of the experimental stability range and the limit cycle oscillation investigations. Due to the good agreement of simulation and experiment the limit cycle oscillations can be explained by means of nonlinear aerodynamic effects.  相似文献   
37.
任淮辉  王习术  陈应龙  李旭东 《中国物理 B》2012,21(3):34501-034501
In this paper, the natural structures of a dragonfly wing, including the corrugation of the chordwise cross-section, the sandwich microstructure veins, and the junctions between the vein and the membrane, have been investigated with experimental observations, and the morphological parameters of these structural features are measured. The experimental result indicates that the corrugated angle among the longitudinal veins ranges from 80° to 150°, and the sandwiched microstructure vein mainly consists of chitin and protein layers. Meanwhile, different finite element models, which include models I and I* for the planar forewings, models II and II* for the corrugated forewings, and a submodel with solid veins and membranes, are created to investigate the effects of these structural features on the natural frequency/modal, the dynamical behaviors of the flapping flight, and the deformation mechanism of the forewings. The numerical results indicate that the corrugated forewing has a more reasonable natural frequency/modal, and the first order up-down flapping frequency of the corrugated wing is closer to the experimental result (about 27.00 Hz), which is significantly larger than that of the planar forewing (10.94 Hz). For the dynamical responses, the corrugated forewing has a larger torsional angle than the planar forewing, but a lower flapping angle. In addition, the sandwich microstructure veins can induce larger amplitudes of torsion deformation, because of the decreasing stiffness of the whole forewing. For the submodel of the forewing, the average stress of the chitin layer is much larger than that of the protein layer in the longitudinal veins. These simulative methods assist us to explain the flapping flight mechanism of the dragonfly and to design a micro aerial vehicle by automatically adjusting the corrugated behavior of the wing.  相似文献   
38.
在南航3m低速风洞内,利用一套两自由度动态试验机构,通过测力实验研究了某飞机模型静态和俯仰动态过程中大迎角下的横侧向气动特性,分析比较了在模型头部加上扰动片后,对横侧向气动特性产生的影响.研究结果表明,模型在静态大迎角下会产生较大的侧向力和偏航力矩,而模型的快速上仰过程则进一步加剧了模型头部流动的非对称性,在大迎角下产生较大的偏航力矩迟滞环;当在模型头部加扰动片后,不论是静态过程还是动态过程,都使得模型的侧向力和偏航力矩减小,从而改善了俯仰运动过程中大迎角下的横侧向气动特性.  相似文献   
39.
The wing rock motion is frequently suffered by a wing-body configuration with low swept wing at high angle of attack. It is found from our experimental study that the tip perturbation and wing longitudinal locations affect significantly the wing rock motion of a wing-body. The natural tip perturbation would make the wing rock motion of a nondeterministic nature and an artificial mini-tip perturbation would make the wing rock motion deterministic. The artificial tip perturbation would, as its circumferential location is varied, generate three different types of motion patterns: (1) limit cycle oscillation, (2) irregular oscillation, (3) equilibrium state with tiny oscillation. The amplitude of rolling oscillation corresponding to the limit cycle oscillatory motion pattern is decreased with the wing location shifting downstream along the body axis.  相似文献   
40.
高温真实气体底部流动的NS方程数值计算   总被引:1,自引:0,他引:1  
夏南 《力学季刊》2000,21(3):294-298
本文数值模拟了高超音速飞行时钝锥的底部流动。采用轴对称NS方程并考虑真实气体效应。湍流模型采用修正的Baldwin-Lomax涡粘性代数模型,数值方法空间离散对流项采用显式NND格式,粘性项采用中心差。时间离散采用三阶的龙格-库塔法。真实气体模型采用考虑七种组分四种反应的汉森模型。给出了底部流场的压力和温度分布及各组分的浓度分布。可以看出在近底部区域高速流-绕过拐角就产生一回流旋涡区。由于温度变化很大,气体的热力学特性受气体离解、复合和振动能激发的影响。所以整个流动过程变得十分复杂。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号