首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   102947篇
  免费   5925篇
  国内免费   12567篇
化学   79025篇
晶体学   1648篇
力学   2460篇
综合类   855篇
数学   12730篇
物理学   24721篇
  2024年   98篇
  2023年   848篇
  2022年   1791篇
  2021年   2083篇
  2020年   2534篇
  2019年   2424篇
  2018年   2072篇
  2017年   2948篇
  2016年   3267篇
  2015年   2649篇
  2014年   3659篇
  2013年   7635篇
  2012年   6840篇
  2011年   5772篇
  2010年   4874篇
  2009年   6611篇
  2008年   6766篇
  2007年   7163篇
  2006年   6553篇
  2005年   5431篇
  2004年   5049篇
  2003年   4225篇
  2002年   5299篇
  2001年   3124篇
  2000年   2870篇
  1999年   2687篇
  1998年   2373篇
  1997年   1851篇
  1996年   1649篇
  1995年   1561篇
  1994年   1394篇
  1993年   1142篇
  1992年   1080篇
  1991年   732篇
  1990年   627篇
  1989年   569篇
  1988年   426篇
  1987年   324篇
  1986年   308篇
  1985年   261篇
  1984年   266篇
  1983年   145篇
  1982年   219篇
  1981年   186篇
  1980年   201篇
  1979年   188篇
  1978年   173篇
  1977年   125篇
  1976年   113篇
  1973年   72篇
排序方式: 共有10000条查询结果,搜索用时 640 毫秒
211.
Liquid‐crystalline, segmented polyurethanes with methoxy–biphenyl mesogens pendant on the chain extender were synthesized by the conventional prepolymer technique and esterification reaction. Two, side‐chain, liquid‐crystalline (SCLC) polyurethanes with mesogens having spacers of six and eight methylene units were prepared. The structures of the mesogenic units and SCLC polyurethanes were confirmed by Fourier transform infrared spectroscopy and 1H NMR. Polymer properties were also examined by solubility tests, water uptakes, and inherent viscosity measurements. Differential scanning calorimetry studies indicated that the transition temperature of the isotropic to the liquid‐crystalline phase decreased with increasing spacer length. Wide‐angle X‐ray diffraction (WAXD) studies revealed the existence of liquid‐crystalline phases for both SCLC polyurethanes. Polarized optical microscopic investigations further confirmed the thermotropic liquid‐crystalline behaviors and nematic mesophases of both samples. Thermogravimetric analysis displayed better thermal stabilities for both SCLC polymers and indicated that the presence of mesogenic side chains may increase the thermal stability of segmented polyurethanes. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 290–302, 2004  相似文献   
212.
The synthesis and characterization of novel first‐ and second‐generation true dendritic reversible addition–fragmentation chain transfer (RAFT) agents carrying 6 or 12 pendant 3‐benzylsulfanylthiocarbonylsulfanylpropionic acid RAFT end groups with Z‐group architecture based on 1,1,1‐hydroxyphenyl ethane and trimethylolpropane cores are described in detail. The multifunctional dendritic RAFT agents have been used to prepare star polymers of poly(butyl acrylate) (PBA) and polystyrene (PS) of narrow polydispersities (1.4 < polydispersity index < 1.1 for PBA and 1.5 < polydispersity index < 1.3 for PS) via bulk free‐radical polymerization at 60 °C. The novel dendrimer‐based multifunctional RAFT agents effect an efficient living polymerization process, as evidenced by the linear evolution of the number‐average molecular weight (Mn) with the monomer–polymer conversion, yielding star polymers with molecular weights of up to Mn = 160,000 g mol?1 for PBA (based on a linear PBA calibration) and up to Mn = 70,000 g mol?1 for PS (based on a linear PS calibration). A structural change in the chemical nature of the dendritic core (i.e., 1,1,1‐hydroxyphenyl ethane vs trimethylolpropane) has no influence on the observed molecular weight distributions. The star‐shaped structure of the generated polymers has been confirmed through the cleavage of the pendant arms off the core of the star‐shaped polymeric materials. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5877–5890, 2004  相似文献   
213.
We studied simulations by computer graphics to estimate the steric mechanism of the asymmetric polymerization of prochiral diene monomers in channels of inclusion compounds of steroidal bile acids, such as deoxycholic acid (DCA) and cholic acid. We applied a hierarchization method to interpret the crystal structures of bile acids, clarifying that the chiral host molecules associated to form characteristic 21-helical assemblies with uneven surfaces. A detailed analysis of the uneven channels in a close-packing state indicated that there were many possible arrangements of the monomers in the channels. The plausible arrangements in the channel could explain a previous study, which showed that the polymerization in the DCA channel yielded chiral polymers with a predominant configuration from prochiral diene monomers, such as 2-methyl-trans-1,3-pentadiene. On the basis of such simulation studies of the arrangements of guest monomers in the channel, we examined a plausible steric mechanism for asymmetric inclusion polymerization. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4648–4655, 2004  相似文献   
214.
A poly(p‐phenylenevinylene) (PPV) derivative containing a bulky (2,2‐diphenylvinyl)phenyl group in the side chain, EHDVP‐PPV, was synthesized by Gilch route. The reduced tolane‐bisbenzyl (TBB) defects, as well as the structure of the polymer, was confirmed by various spectroscopic methods. The intramolecular energy transfer from the (2,2‐diphenylvinyl)phenyl side group to the PPV backbone was studied by UV‐vis and photoluminescence (PL) of the obtained polymer and model compound. The polymer film showed maximum absorption and emission peaks at 454 and 546 nm, respectively, and high PL efficiency of 57%. A yellow electroluminescence (λmax = 548 nm) was obtained with intensities of 6479 cd/m2 when the light‐emitting diodes of ITO/PEDOT/EHDVP‐PPV/LiF/Al were fabricated. The maximum power efficiency of the devices was 0.729 lm/W with a turn‐on voltage of 3.6 V. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5636–5646, 2004  相似文献   
215.
Poly(pyridine ether)s were prepared in two ways: the polycondensation of silylated 1,1,1‐tris(4‐hydroxyphenyl)ethane (THPE) with 2,6‐difluoropyridine (method A) and the polycondensation of free THPE with 2,6‐dichloropyridine (method B). With method A, the THPE/difluoropyridine feed ratio was varied from 1.0:1.0 to 1.0:1.6. Cycles, bicycles, and multicycles were the main reaction products, and crosslinking was never observed. When ideal stoichiometry was used exclusively, multicycles free of functional groups were obtained. These multicycles were detectable in matrix‐assisted laser desorption/ionization time‐of‐flight (MALDI‐TOF) mass spectra up to B38C76 with a mass of approximately 32,000 Da. With method B, the reaction conditions were varied at a fixed feed ratio to achieve an optimum for the preparation of multicyclic polyethers, but because of the lower reactivity of 2,6‐dichloropyridine, a quantitative conversion was not achieved. The reaction products were characterized with MALDI‐TOF mass spectrometry, viscosity measurements, and size exclusion chromatography. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5725–5735, 2004  相似文献   
216.
A method was developed for free‐radical polymerization in the confines of a hollow latex particle. Hollow particles were prepared via the dynamic swelling method from polystyrene seed and divinylbenzene and had hollows of 500–1000 nm. So that these hollow poly(divinylbenzene) particles could function as submicrometer reactors, the particles were filled with a monomer (N‐isopropylacrylamide) via the dispersion of the dried particles in the molten monomer. The monomer that was not contained in the hollows was removed by washing and gentle abrasion. Free‐radical polymerization was then initiated by γ radiolysis in the solid state. Transmission electron microscopy showed that poly(N‐isopropylacrylamide) formed in the hollow interior of the particles, which functioned as submicrometer reactors. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5706–5713, 2004  相似文献   
217.
The phase‐separation behavior of thermoplastic poly(ester‐imide) [P(E‐I)] multiblock copolymers, (A‐B)n, was investigated by a stepwise variation of the imide content. All the multiblock copolymers were synthesized by solution polycondensation with dimethylformamide as a solvent. P(E‐I)s were prepared with anhydride‐terminated polyester prepolymer and diisocyanates. Polyester prepolymers were prepared by the reaction of pyromellitic dianhydride and two different polyols [poly(tetramethylene oxide glycol) (PTMG) and polycaprolactone diol (PCL)]. Structural determination was done with Fourier transform infrared spectroscopy and Fourier transform NMR, and the molecular weight was determined by gel permeation chromatography. The effect of the imide content on the thermal properties of the synthesized P(E‐I)s was investigated by thermogravimetric analysis and differential scanning calorimetry. The polymers were also characterized for static and dynamic mechanical properties. Thermal analysis data indicated that the polymers based on PTMG were stable up to 330 °C in nitrogen atmosphere and exhibited phase‐separated morphology. Polymers based on PCL showed multistage decomposition, and the films derived from them were too fragile to be characterized for static and dynamic mechanical properties. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 341–350, 2004  相似文献   
218.
This article describes the formation and characterization of self‐assembled nanoparticles of controlled sizes based on amphiphilic block copolymers synthesized by ring‐opening metathesis polymerization. We synthesized a novel hydrophobic derivative of norbornene; this monomer could be polymerized using Grubbs' catalyst [Cl2Ru(CHPh)(PCy3)2] forming polymers of controlled molecular weight. We synthesized amphiphilic block copolymers of controlled composition and showed that they assemble into nanoparticles of controlled size. The nanoparticles were characterized using dynamic light scattering and transmission electron microscopy. Tuning the composition of the block copolymer enables the tuning of the diameters of the nanoparticles in the 30‐ to 80‐nm range. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3352–3359, 2004  相似文献   
219.
The solution polyesterification of dicarboxylic acids in pyridine, the activated intermediates of which were difficult to dissolve in tosyl chloride/dimethylformamide/pyridine, was investigated in the presence of lithium chloride. The solubility of the activated dicarboxylic acids was largely improved by the presence of the salt, and the polycondensation with bisphenols was greatly facilitated. The salt was more effectively added to a pyridine solution of dicarboxylic acids than to the activated dicarboxylic acids in pyridine. The favorable additive effect on the improved solubility was attributed to a lowered degree of association of the activated dicarboxylic acids, which led to distributions of the resulting oligomers from bisphenols at an earlier stage closer to the theoretical ones and yielded better polycondensation results. The reaction, which proceeded through favorable distributions of the co‐oligomers, produced copolymers of higher inherent viscosities and slightly block sequence distributions determined by NMR. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2725–2733, 2004  相似文献   
220.
Well‐defined diblock and triblock copolymers composed of poly(N‐isopropylacrylamide) (PNIPAM) and poly(ethylene oxide) (PEO) were successfully synthesized through the reversible addition–fragmentation chain transfer polymerization of N‐isopropylacrylamide (NIPAM) with PEO capped with one or two dithiobenzoyl groups as a macrotransfer agent. 1H NMR, Fourier transform infrared, and gel permeation chromatography instruments were used to characterize the block copolymers obtained. The results showed that the diblock and triblock copolymers had well‐defined structures and narrow molecular weight distributions (weight‐average molecular weight/number‐average molecular weight < 1.2), and the molecular weight of the PNIPAM block in the diblock and triblock copolymers could be controlled by the initial molar ratio of NIPAM to dithiobenzoate‐terminated PEO and the NIPAM conversion. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4873–4881, 2004  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号