排序方式: 共有84条查询结果,搜索用时 15 毫秒
51.
Rohan Abeyaratne Srikanth Vedantam 《Journal of the mechanics and physics of solids》2003,51(9):1675-1700
In this paper we derive a macroscopic kinetic law for twin boundary motion from a lattice dynamical model. The model is developed for compound and type-1 twins and it is explicitly illustrated for a Cu-Al-Ni shape memory alloy. The governing multiple-well energy is calculated using an effective interatomic potential; a Frenkel-Kontorowa type model is developed for the dynamics at the lattice scale; and a quasi-continuum approximation is used to determine the continuum-scale kinetics. The model predicts that compound twins in the Cu-Al-Ni shape memory alloy are an order of magnitude more mobile than type-1 twins which is consistent with experimental observations. 相似文献
52.
Yongqiang Li Lianchun Zhu Yao Liu Yujie Wei Yanxin Wu Di Tang Zhenli Mi 《Journal of the mechanics and physics of solids》2013
We present a systematic investigation on the strain hardening and texture evolution in high manganese steels where twinning induced plasticity (TWIP) plays a significant role for the materials' plastic deformation. Motivated by the stress–strain behavior of typical TWIP steels with compositions of Fe, Mn, and C, we develop a mechanistic model to explain the strain-hardening in crystals where deformation twinning dominates the plastic deformation. The classical single crystal plasticity model accounting for both dislocation slip and deformation twinning are then employed to simulate the plastic deformation in polycrystalline TWIP steels. While only deformation twinning is activated for plasticity, the simulations with samples composed of voronoi grains cannot fully capture the texture evolution of the TWIP steel. By including both twinning deformation and dislocation slip, the model is able to capture both the stress–strain behaviors and the texture evolution in Fe–Mn–C TWIP steel in different boundary-value problems. Further analysis on the strain contributions by both mechanisms suggests that deformation twinning plays the dominant role at the initial stage of plasticity in TWIP steels, and dislocation slip becomes increasingly important at large strains. 相似文献
53.
George Darsavelidze Domenti Gabunia Zurab Zoidze Jimsher Tsikaridze 《Journal of solid state chemistry》2004,177(2):605-608
Effect of doping with Zr(Re) on the structure and physical-mechanical properties of β-rhombohedral boron has been studied. In all specimens p-type conductivity was found. Internal friction and dynamic shear modulus of the specimens were investigated at frequencies of torsion oscillations (0.5-5 Hz) in the temperature range 80<T<1000 K. The increase of Zr(Re) concentration in the samples results in increase of their hole concentration, this increasing and shifting the observed IF maxima to lower temperatures; activation energy of the maxima and frequency factor of the relaxation processes decrease by 10-15%. Effects of change of the structure-sensitive properties observed in Zr-(Re)-doped boron are analyzed in view of changes of activation energy necessary for the motion of twinning boundaries and stacking faults. 相似文献
54.
Large quantities of rhombohedra and elongated rhombohedra boron suboxide platelets with flat (0 0 1) surface have been synthesized through conventional solid state reaction. Detailed structural investigations by selected area electron diffraction (SAED) and high-resolution electron microscopy (HRTEM) of these platelets are presented. We present the direct experimental observation of extensive lateral (0 0 1) microtwins in rhombohedra platelets and they give rise to the fractional diffractions spots. It is believed that the growth of these rhombohedra platelets is prompted by the twin-plane reentrant edge (TPRE) mechanism. The transition from rhombohedra platelets to elongated rhombohedra platelets in morphology is probably the result of catalytic growth at the apexes of the platelets. This proposed growth model can be representative of various platelets with low defects formation energy, especially in twinned crystals having a rhombohedra structure. Besides, the presence of extensive microtwins will yield interesting physical properties and probably results in the broadening of photoluminescence (PL) spectra from the rhombohedra and elongated rhombohedra platelets. 相似文献
55.
Evan Lyle Thomas Moo Sung Kim Marcus C. Bennett Julia Y. Chan 《Journal of solid state chemistry》2007,180(8):2356-2362
Single crystals of a new compound, Ce2Rh3(Pb,Bi)5, have been grown via a flux-growth technique using molten Pb as a solvent. The compound has been characterized by single crystal X-ray diffraction and found to be of the orthorhombic Y2Rh3Sn5 structure type [Cmc21 (No. 36), Z=4] with lattice parameters a=4.5980(2), b=27.1000(17) and c=7.4310(4) Å, with V=925.95(9) Å3. Ce2Rh3(Pb,Bi)5 has a complex crystal structure containing Ce atoms encased in Rh-X (X=Pb/Bi) pentagonal and octagonal channels in [100], with polyanions similar to those found in Ce2Au3In5 and Yb2Pt3Sn5. Magnetization measurements find that Ce2Rh3(Pb,Bi)5 is a quasi-two-dimensional system, where the Ce moments are spatially well-localized. Heat capacity measurements show a transition at the Néel temperature of 1.5 K. Evidence for Fermi surface nesting is found in electrical resistivity measurements, and we argue that Ce2Rh3(Pb,Bi)5 is very near a metal-insulator transition in zero field. 相似文献
56.
Etch figures on gallium orthophosphate (GaPO4) crystals are presented for the {0 0 1}, {0 1 0},
,
and {1 0 1} faces. Primarily they are used in detecting possibly occurring domains of twinning. Generally, the etch figures of GaPO4 show similarities as well as differences compared to those of low-quartz modifications of SiO2 and AlPO4. 相似文献
57.
Andrzej Grzechnik P. Shiv Halasyamani Karen Friese 《Journal of solid state chemistry》2009,182(6):1570-4480
The high-pressure behavior of TlTeVO5 has been investigated in situ using single-crystal X-ray diffraction in a diamond anvil cell. This material is structurally stable at least to 7.11 GPa, the highest pressure reached in this study. TlTeVO5 is twinned both at ambient and high pressures (Pna21, Z=4). The twinning law relating the two individuals is equivalent to a rotation of approximately 3° around the direction. Within errors, no changes in the orientation of the two individuals are observed as a function of pressure. The refined twin volume fractions do not change within estimated standard deviations, either.The material is the most and the least compressible along the c and a axes, respectively. The P-V data could be fitted by a Murnaghan equation of state with B0=32(1) GPa, V0=504.4(4) Å3, and B′=7.97(43). The most important effect of pressure is the increase of the coordination numbers for the Tl and Te atoms. The Tl-O distance nearly parallel to the [001] direction is the most sensitive structural feature to pressure, resulting in the anisotropic compressibility. The long Te-O distances decrease, while the short ones are constant or even become slightly longer. Such a pressure-induced change of the coordination is interpreted as due to increasing uniformity of the oxygen atoms surrounding the cations and to decreasing activity of the electron lone pairs. The change is accompanied by an increase of the pseudosymmetry of the structure with respect to the centrosymmetric space group Pnna. 相似文献
58.
A near-γ TiAl based alloy with 2 at% of Nb was investigated by means of collaborative research based on transmission electron microscopy and in-situ neutron diffraction techniques with the aim to study mechanical twinning and its role within the mechanisms governing fatigue response and material properties. In-situ neutron diffraction measurements were performed during low cycle fatigue straining at room temperature. Induced lattice strain related to the formation of deformation twins was detected and used to follow changes in the macroscopic material response caused by the twinning process during cycling. A microscopic insight was realised by using several transmission electron microscopy techniques to reveal in detail an internal deformation microstructure of the material at the beginning as well as at the end of the fatigue life. The study was focused on the first loading cycles where the material shows intense cyclic hardening. The effect of mechanical twinning on the material behaviour at several stages of the fatigue life is discussed for two different total strain amplitudes of 0.2% and 0.4%. 相似文献
59.
Hamidreza Abdolvand Mark R. Daymond Charles Mareau 《International Journal of Plasticity》2011,27(11):1721-1738
A crystal plasticity finite element code is developed to model lattice strains and texture evolution of HCP crystals. The code is implemented to model elastic and plastic deformation considering slip and twinning based plastic deformation. The model accounts for twinning reorientation and growth. Twinning, as well as slip, is considered to follow a rate dependent formulation. The results of the simulations are compared to previously published in situ neutron diffraction data. Experimental results of the evolution of the texture and lattice strains under uniaxial tension/compression loading along the rolling, transverse, and normal direction of a piece of rolled Zircaloy-2 are compared with model predictions. The rate dependent formulation introduced is capable of correctly capturing the influence of slip and twinning deformation on lattice strains as well as texture evolution. 相似文献
60.