PP-carbon CPC show interesting thermo-electrical properties, smooth resistivity increase with temperature up to 150°C and consequently high power dissipation on a wide temperature range. The addition of short carbon fibers to PP already formulated with carbon black increases sharply the electrical conductivity of the CPC but does not have much influence on thermal conductivity as it could have been expected from the favorable aspect ratio of the fibers. The simulations of the thermo-electrical behavior of the CPC under tension put into evidence a temperature gradient at high heat flux due to the low thermal conductivity, which may damage the material itself. 相似文献
In this article, we discuss the dynamics of a single drop immersed in an immiscible liquid, under an imposed shear flow. The two situations of a viscoelastic matrix with a Newtonian drop and of a viscoelastic drop in a Newtonian matrix are considered, both systems being characterized by a viscosity ratio equal to one, and by the same elasticity parameter. Experimental data are taken with a rheo-optical computer-assisted shearing device, allowing for drop observation from the vorticity direction of the shear flow. Data favourably compare with predictions of the recently proposed Maffettone-Greco model, where the drop is described as a deforming ellipsoid. 相似文献
New ternary rare earth metal boride carbides with compositions close to RE10B9C10 (RE = Gd, Tb) were prepared from the elements by melting around 1800 K followed by annealing in silica tubes at 1270 K for one month. The crystal structure of the terbium compound was solved by single‐crystal X‐ray diffraction. It crystallizes in a new structure type in the monoclinic space group P21/c, a = 7.937(1), b = 23.786(2), c = 11.172(1) Å, β = 133.74(1)°, Z = 4, R1 = 0.045 (wR2 = 0.11) for 5713 reflections with Io > 2σ(Io). In the structure BC2 units and single carbon atoms are attached to a zigzag boron chain forming the unprecedented B18C18 branching unit with a B–B distance of 2.42(2) Å between these units. In addition isolated carbon atoms occupy the centres of elongated octahedra formed by rare earth metal atoms. Disorder in the terbium position together with anomalous displacement ellipsoids for carbon atoms except of those in the BC2 fragments can be rationalized in terms of a slight deviation in stoichiometry, Tb10B9+xC10–x (x ≈? 0.2). The terbium compound is ferromagnetic below TC ≈? 45 K. Due to the presence of moderately narrow domain walls the magneto‐crystalline energy is small. 相似文献
The novel heterospin complex [Ni2(PhCOO)4(NITpPy)2]·2CH3CN ( 1 ) was synthesized by the reaction of nickel benzoate and 2‐(4‐pyridyl)‐4,4,5,5‐tetramethylimidazoline‐1‐oxyl‐3‐oxide (NITpPy) in acetonitrile and dichloromethane solutions. The X‐ray structure determination shows that complex 1 consists of a symmetrical dimeric NiII benzoate paddle‐wheel core and pyridyl nitrogen atoms of radical ligands at the apical position, in addition, the temperature (2–300K) dependent magnetic susceptibility measurements indicate that 1 has antiferromagnetic behavior. 相似文献
A sensitive magnetic nanoprobe : Hydrogen‐bonding interactions are reflected with great sensitivity in the 1H NMR spectra of a high‐spin multinuclear Fe4II [2×2] grid‐type complex (see scheme) and the measured shifts can be used to evaluate the hydrogen‐bond donating ability. The grid complex also represents a prototype of a very sensitive magnetic nanoreceptor for the detection of very small changes around a magnetic center.
Substitution of Fe for Sc in CoFe2O4 spinel structure is presented. All CoFe2−xScxO4 compounds crystallize in the spinel type structure (space group Fd3?m). By using X-ray diffraction studies, magnetic measurements and in-field 57Fe Mössbauer spectrometry, the limit of substitution has been determined to be equal to x=0.56. An increase in the cell parameter and the strains and a decrease in the apparent crystallites size are observed. For x>0.3, a partial oxidation of cobalt is evidenced and Co3+ is stabilized in the structure. A ferromagnetic behavior has been observed for all investigated compounds. As x increases, the Curie temperature and the hyperfine fields decrease. Following the Stephenson model, the diminution of TC is ascribed to a decrease of the main JAB interaction. 相似文献
Density functional theory, in combination with a) a careful choice of the exchange-correlation part of the total energy and b) localized basis sets for the electronic orbitals, has become the method of choice for calculating the exchange-couplings
in magnetic molecular complexes. Orbital expansion on plane waves can be seen as an alternative basis set especially suited
to allow optimization of newly synthesized materials of unknown geometries. However, little is known on the predictive power
of this scheme to yield quantitative values for exchange coupling constants J as small as a few hundredths of eV (50–300 cm−1). We have used density functional theory and a plane waves basis set to calculate the exchange couplings J of three homodinuclear Cu-based molecular complexes with experimental values ranging from +40 cm−1 to −300 cm−1. The plane waves basis set proves as accurate as the localized basis set, thereby suggesting that this approach can be reliably
employed to predict and rationalize the magnetic properties of molecular-based materials.
Corresponding author. E-mail: Carlo.Massobrio@ipcms.u-strasbg.fr
Received August 5, 2002; accepted August 9, 2002 相似文献
Mutual diffusion coefficients and densities were measured for aqueous ZnCl2–KCl mixtures at 25° by using free-diffusion Rayleigh interferometry and pycnometry, respectively. The ZnCl2 concentrations were fixed at 1.5 mol-dm–3, whereas those of KCl were 0.5, 1.25, 2.0, or 4.0 mol-dm–3. This corresponds to a half charged zinc-chlorine storage battery at various suporting electrolyte concentrations. The main-term coefficient of ZnCl2 only varies by 10% with KCl concentration, whereas that of KCl varies by about 22%. The ZnCl2 cross-term coefficient remains small and positive; in contrast the KCl cross-term coefficient goes through a maximum and is negative at high and low KCl concentrations. At KCl concentrations of 0.5 and 4.0 mol-dm–3, solutions with the KCl c0 are statically and dynamically (diffusively) unstable at the top and bottom of the boundary. Evaluation of the parameters of the non-linear least-squares solution to the diffusion equation is difficult for the 1.25 mol-dm–3 KCl case, since this system has nearly equal eigenvalues in its diffusion coefficient matrix. 相似文献
During thermal plasma processing of materials, vapor generated from injected particulate matter will enter the plasma. Even traces of metallic vapors may have a strong effect on the properties and the behavior of the plasma and on the associated heat flux to the injected particles. In this paper a model system is considered in which an argon plasma at atmospheric pressure is contaminated by small amounts of copper vapor. By using the Chapman-Enskog approximation for a multicomponent gas mixture the transport properties are calculated for such a contaminated argon plasma. The results show that there is a drastic effect on the electrical properties. For temperatures below 104 K, the electrical conductivity, for example, increases by more than an order of magnitude if metallic vapor is present. The presence of metallic contaminants is also somewhat felt by the reactional thermal conductivity. In contrast, there is no effect on the heavy-particle properties as long as the percentage of the contaminants remains small. 相似文献