首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   781篇
  免费   65篇
  国内免费   35篇
化学   107篇
晶体学   7篇
力学   247篇
综合类   1篇
数学   135篇
物理学   384篇
  2024年   2篇
  2023年   5篇
  2022年   4篇
  2021年   9篇
  2020年   25篇
  2019年   18篇
  2018年   18篇
  2017年   18篇
  2016年   26篇
  2015年   24篇
  2014年   25篇
  2013年   47篇
  2012年   22篇
  2011年   37篇
  2010年   36篇
  2009年   33篇
  2008年   38篇
  2007年   43篇
  2006年   55篇
  2005年   39篇
  2004年   43篇
  2003年   36篇
  2002年   27篇
  2001年   23篇
  2000年   28篇
  1999年   20篇
  1998年   24篇
  1997年   20篇
  1996年   10篇
  1995年   20篇
  1994年   11篇
  1993年   10篇
  1992年   15篇
  1991年   14篇
  1990年   8篇
  1989年   3篇
  1988年   7篇
  1987年   4篇
  1986年   5篇
  1985年   6篇
  1984年   2篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   6篇
  1977年   2篇
  1976年   1篇
  1969年   1篇
  1957年   2篇
排序方式: 共有881条查询结果,搜索用时 31 毫秒
251.
Circadian rhythms occur in nearly all living organisms with a period close to 24 h. These rhythms constitute an important class of biological oscillators which present the characteristic of being naturally subjected to forcing by light-dark (LD) cycles. In order to investigate the conditions in which such a forcing might lead to chaos, we consider a model for a circadian limit cycle oscillator and assess its dynamic behavior when a light-sensitive parameter is periodically forced by LD cycles. We determine as a function of the forcing period and of the amplitude of the light-induced changes in the light-sensitive parameter the occurrence of various modes of dynamic behavior such as quasi-periodicity, entrainment, period-doubling and chaos. The type of oscillatory behavior markedly depends on the forcing waveform; thus the domain of entrainment grows at the expense of the domain of chaos as the forcing function progressively goes from a square wave to a sine wave. Also studied is the dependence of the phase of periodic or aperiodic oscillations on the amplitude of the light-induced changes in the control parameter. The results are discussed with respect to the main physiological role of circadian rhythms which is to allow organisms to adapt to their periodically varying environment by entrainment to the natural LD cycle.  相似文献   
252.
G Rajasekaran 《Pramana》2000,55(1-2):19-32
The phenomenology of solar, atmospheric, supernova and laboratory neutrino oscillations is described. Analytical formulae for matter effects are reviewed. The results from oscillations are confronted with neutrinoless double beta decay.  相似文献   
253.
L Wolfenstein 《Pramana》2000,54(1):21-25
Neutrinos travel through matter with negligible absorption except in very extreme situations. However, the index of refraction of neutrinos can play an important role in the oscillation of one type of neutrino to another when passing through matter.  相似文献   
254.
This paper introduces a biparametric family of Lyapunov functions for a non-linear mathematical model based on the FitzHugh-Nagumo equations able to reproduce some main features of the X-ray bursting behaviour exhibited by the microquasar GRS 1915+105. These functions are useful to investigate the properties of equilibrium points and allow us to demonstrate a theorem on the global stability. The transition between bursting and stable behaviour is also analyzed.  相似文献   
255.
The Quartz Crystal Microbalance with Dissipation (QCM-D) sensing technique has become widely used to study various supported thin films and adsorption of biological macromolecules, nanoparticles, aggregates, and cells. Such sensing, based on tracking shear oscillations of a piezoelectric crystal, can be employed in situations which are far beyond conventional ones. For example, one can deposit tubes on the surface of a sensor, orient them along the direction of the sensor surface oscillations, and study liquid oscillations inside the oscillating tubes. Herein, we illustrate and classify theoretically the regimes of liquid oscillations in this case. In particular, we identify and scrutinize the transition from the regime with appreciable gradients along the radial coordinate, which are qualitatively similar to those near the oscillating flat interface, to the regime where the liquid oscillates nearly coherently in the whole tube. The results are not only of relevance for the specific case of nanotubes but also for studies of certain mesoporous samples.  相似文献   
256.
This paper proposes and analyzes a discrete-time deterministic SIR model with information dependent immunization behaviour, where vaccination coverage at birth during any period of time is a general phenomenological function of the risk of infection that is perceived at the beginning of the period. Results on existence of equilibria, their local stability, and system persistence are proved. Then, by considering the noteworthy subcase of a piecewise linear ‘prevalence-dependent’ coverage function, the local stability of the endemic state is proved and conditions for its global asymptotic stability are given. Some insight on both Neimarck-Sacher and period-doubling bifurcations are provided. Overall we show that prevalence-dependent coverage is an essentially stabilising force. However period-doubling bifurcations are possible though under stressed parameter constellations.  相似文献   
257.
Neuromorphic engineering promises to have a revolutionary impact in our societies. A strategy to develop artificial neurons (ANs) is to use oscillatory and excitable chemical systems. Herein, we use UV and visible radiation as both excitatory and inhibitory signals for the communication among oscillatory reactions, such as the Belousov–Zhabotinsky and the chemiluminescent Orban transformations, and photo-excitable photochromic and fluorescent species. We present the experimental results and the simulations regarding pairs of ANs communicating by either one or two optical signals, and triads of ANs arranged in both feed-forward and recurrent networks. We find that the ANs, powered chemically and/or by the energy of electromagnetic radiation, can give rise to the emergent properties of in-phase, out-of-phase, anti-phase synchronizations and phase-locking, dynamically mimicking the communication among real neurons.  相似文献   
258.
《Physics letters. A》2014,378(22-23):1632-1635
We consider a cold plasma in order to find new large-amplitude wave solutions in the long-wavelength limit. Accordingly we derive two generic coupled equations which describe the energy exchange between the electrostatic and electromagnetic waves. A new kind of quasi-periodic behavior is found. Our derivations may be considered as a prerequisite to extended studies of stimulated Raman scattering for cases where the wave amplitudes are so large that standard perturbation techniques are not applicable.  相似文献   
259.
Attractors of a rotating viscoelastic beam   总被引:1,自引:0,他引:1  
We investigate the non-linear oscillations of a rotating viscoelastic beam with variable pitch angle. The governing equations of motion are two coupled partial differential equations for the longitudinal and transversal displacements. Using a perturbation technique and Galerkin's projection, we reduce the equations of motion to a non-autonomous ordinary differential equation. Our regular perturbation technique is based on the expansion of longitudinal displacement and the amplitude of first transversal mode in terms of a small parameter. We numerically generate the Poincaré maps of the reduced equations and reveal that the system exhibits regular and chaotic attractors. The regular attractors are stable limit-cycles that are relevant to stable, short-period oscillations of the beam. A bifurcation analysis has also been performed when the pitch angle is constant.  相似文献   
260.
This paper presents the analysis of the global bifurcations and chaotic dynamics for the nonlinear nonplanar oscillations of a cantilever beam subjected to a harmonic axial excitation and transverse excitations at the free end. The governing nonlinear equations of nonplanar motion with parametric and external excitations are obtained. The Galerkin procedure is applied to the partial differential governing equation to obtain a two-degree-of-freedom nonlinear system with parametric and forcing excitations. The resonant case considered here is 2:1 internal resonance, principal parametric resonance-1/2 subharmonic resonance for the in-plane mode and fundamental parametric resonance–primary resonance for the out-of-plane mode. The parametrically and externally excited system is transformed to the averaged equations by using the method of multiple scales. From the averaged equation obtained here, the theory of normal form is applied to find the explicit formulas of normal forms associated with a double zero and a pair of pure imaginary eigenvalues. Based on the normal form obtained above, a global perturbation method is utilized to analyze the global bifurcations and chaotic dynamics in the nonlinear nonplanar oscillations of the cantilever beam. The global bifurcation analysis indicates that there exist the heteroclinic bifurcations and the Silnikov type single-pulse homoclinic orbit in the averaged equation for the nonlinear nonplanar oscillations of the cantilever beam. These results show that the chaotic motions can occur in the nonlinear nonplanar oscillations of the cantilever beam. Numerical simulations verify the analytical predictions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号