首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1966篇
  免费   196篇
  国内免费   649篇
化学   2049篇
晶体学   10篇
力学   137篇
综合类   15篇
数学   41篇
物理学   559篇
  2024年   7篇
  2023年   27篇
  2022年   91篇
  2021年   79篇
  2020年   107篇
  2019年   98篇
  2018年   84篇
  2017年   91篇
  2016年   109篇
  2015年   101篇
  2014年   140篇
  2013年   174篇
  2012年   146篇
  2011年   207篇
  2010年   129篇
  2009年   176篇
  2008年   159篇
  2007年   170篇
  2006年   138篇
  2005年   125篇
  2004年   105篇
  2003年   88篇
  2002年   55篇
  2001年   39篇
  2000年   29篇
  1999年   25篇
  1998年   22篇
  1997年   22篇
  1996年   11篇
  1995年   9篇
  1994年   6篇
  1993年   6篇
  1992年   4篇
  1991年   9篇
  1990年   4篇
  1989年   2篇
  1987年   1篇
  1986年   3篇
  1985年   4篇
  1984年   3篇
  1982年   1篇
  1980年   1篇
  1978年   1篇
  1973年   1篇
  1959年   1篇
  1957年   1篇
排序方式: 共有2811条查询结果,搜索用时 31 毫秒
991.
Facile fabrication of novel three‐dimensional anode materials to increase the bacterial loading capacity and improve substrate transport in microbial fuel cells (MFCs) is of great interest and importance. Herein, a novel graphene‐containing foam (GCF) was fabricated easily by freeze‐drying and pyrolysis of a graphene oxide–agarose gel. Owing to the involvement of graphene and stainless‐steel mesh in the GCF, the GCF shows high electrical conductivity, enabling the GCF to be a conductive electrode for MFC applications. With the aid of agarose, the GCF electrode possesses a supermacroporous structure with pore sizes ranging from 100–200 μm and a high surface area, which greatly increase the bacterial loading capacity. Cell viability measurements indicate that the GCF possesses excellent biocompatibility. The MFC, equipped with a 0.4 mm‐thick GCF anode, shows a maximum area power density of 786 mW m?2, which is 4.1 times that of a MFC equipped with a commercial carbon cloth anode. The simple fabrication route in combination with the outstanding electrochemical performance of the GCF indicates a promising anode for MFC applications.  相似文献   
992.
We report a carbon–air battery for power generation based on a solid‐oxide fuel cell (SOFC) integrated with a ceramic CO2‐permeable membrane. An anode‐supported tubular SOFC functioned as a carbon fuel container as well as an electrochemical device for power generation, while a high‐temperature CO2‐permeable membrane composed of a CO32? mixture and an O2? conducting phase (Sm0.2Ce0.8O1.9) was integrated for in situ separation of CO2 (electrochemical product) from the anode chamber, delivering high fuel‐utilization efficiency. After modifying the carbon fuel with a reverse Boudouard reaction catalyst to promote the in situ gasification of carbon to CO, an attractive peak power density of 279.3 mW cm?2 was achieved for the battery at 850 °C, and a small stack composed of two batteries can be operated continuously for 200 min. This work provides a novel type of electrochemical energy device that has a wide range of application potentials.  相似文献   
993.
Dimethyl ether (DME) has been considered as a promising alternative fuel for direct‐feed fuel cells but lack of an efficient DME oxidation electrocatalyst has remained the challenge for the commercialization of the direct DME fuel cell. The commonly studied binary PtRu catalyst shows much lower activity in DME than methanol oxidation. In this work, guided by density functional theory (DFT) calculation, a ternary carbon‐supported PtRuPd catalyst was designed and synthesized for DME electrooxidation. DFT calculations indicated that Pd in the ternary PtRuPd catalyst is capable of significantly decreasing the activation energy of the C? O and C? H bond scission during the oxidation process. As evidenced by both electrochemical measurements in an aqueous electrolyte and polymer‐electrolyte fuel cell testing, the ternary catalyst shows much higher activity (two‐fold enhancement at 0.5 V in fuel cells) than the state‐of‐the‐art binary Pt50Ru50/C catalyst (HiSPEC 12100).  相似文献   
994.
Fe/N/C is a promising non‐Pt electrocatalyst for the oxygen reduction reaction (ORR), but its catalytic activity is considerably inferior to that of Pt in acidic medium, the environment of polymer electrolyte membrane fuel cells (PEMFCs). An improved Fe/N/C catalyst (denoted as Fe/N/C‐SCN) derived from Fe(SCN)3, poly‐m‐phenylenediamine, and carbon black is presented. The advantage of using Fe(SCN)3 as iron source is that the obtained catalyst has a high level of S doping and high surface area, and thus exhibits excellent ORR activity (23 A g?1 at 0.80 V) in 0.1 M H2SO4 solution. When the Fe/N/C‐SCN was applied in a PEMFC as cathode catalyst, the maximal power density could exceed 1 W cm?2.  相似文献   
995.
Proton-conducting and methanol barrier properties of the proton exchange membrane (PEM), as well as the high cost of direct methanol fuel cell (DMFC) components, are the key determinants of the performance and commercialization of DMFCs. Therefore, this study aimed to develop cost- and performance-effective membranes based on sulphonated poly (vinyl chloride) (SPVC)/poly (2-acrylamido-2-methyl-1-propane sulphonic acid) (PAMPS) blends. Such membranes have been simply prepared by blending SPVC and PAMPS solutions, followed by solvent evaporation via casting. Interaction of SPVC with PAMPS was confirmed by different characterization techniques such as Fourier Transform Infra-red (FTIR) and Raman scattering spectroscopy in which the two characteristic absorption bands of sulfonic groups appeared at 1093 and 1219 cm−1 additionally, strong peaks at around 1656 cm−1 attributed to vibration of amide groups of PAMPS portion in the polymer blend. Furthermore, the interaction of SPVC with PAMPS improves the thermal properties along with ion exchange capacity in turn decreasing the methanol permeability through the membrane in comparison with the SPVC membrane. The IEC of PVC and Nafion 117 membranes were 1.25, 0.91 meq/g; respectively. And the maximum water uptake of PVC and Nafion 117 membranes were 75 and 65.44%; respectively. Methanol permeability value of 7.7 × 10−7 cm2/s which was noticeably lower than the corresponding value recorded for Nafion® (3.39 × 10−6 cm2/s). Therefore, these fabricated membranes can be considered a low-cost efficient candidate for use in DMFC, especially for its capability to resolve the methanol cross-over issue.  相似文献   
996.
付凤艳  程敬泉 《应用化学》2020,37(4):405-415
保护环境,开发环保型能源,对人类和社会具有重要意义。 质子交换膜燃料电池由于具有燃料转化率较高和无污染的优点,备受关注。 静电纺丝纳米纤维具有比表面积大、高孔隙率和三维的相互连通的网状结构等特点,可以在燃料电池质子交换膜中得到广泛应用。 静电纺丝纳米纤维类复合质子交换膜具有较高的质子传导率,较低的燃料渗透率,较好的化学稳定性能、热稳定性能和机械性能。 本文首先介绍了质子交换膜燃料电池,然后从不同的离子型聚合物基质复合质子交换膜的类别出发,介绍了静电纺丝纳米纤维在Nafion、磺化聚酰亚胺(SPI)、聚苯并咪唑(PBI)、磺化聚醚醚酮(SPEEK)等不同种类的离子型聚合物质子交换膜中的研究现状及作用机理,同时对静电纺丝纳米纤维在质子交换膜的应用方面存在的问题及应用前景做了评论和展望。  相似文献   
997.
The hydroxide-exchange membrane fuel cell (HEMFC) is a promising energy conversion device. However, the development of HEMFC is hampered by the lack of platinum-group-metal-free (PGM-free) electrocatalysts for the hydrogen oxidation reaction (HOR). Now, a Ni catalyst is reported that exhibits the highest mass activity in HOR for a PGM-free catalyst as well as excellent activity in the hydrogen evolution reaction (HER). This catalyst, Ni-H2-2 %, was optimized through pyrolysis of a Ni-containing metal-organic framework precursor under a mixed N2/H2 atmosphere, which yielded carbon-supported Ni nanoparticles with different levels of strains. The Ni-H2-2 % catalyst has an optimal level of strain, which leads to an optimal hydrogen binding energy and a high number of active sites.  相似文献   
998.
依据RP-3航空煤油的成分,考虑平均分子量及碳氢摩尔比等性质,本文提出其三组分替代燃料模型,其中正癸烷74.24%、1,3,5-三甲基环己烷14.11%和正丙基苯11.65%(质量分数)。采用机理生成程序ReaxGen得到详细化学反应机理;采用机理简化程序ReaxRed,运用直接关系图法与主成分分析法获得高温骨架机理(79物种,311反应)。该机理针对多个工况进行了点火延迟时间与层流火焰速度的验证,能较好地预测实验结果。路径分析结果表明高温下替代燃料通过氢提取反应、单分子裂解反应及β-断键反应消耗。敏感性分析表明高温点火过程由多种小分子自由基(H、CHO、C2H3等)的氧化及分解反应和大分子燃料的氢提取反应控制;影响火焰传播过程的关键反应来源于C0-C3的小分子核心机理。本文所提出的这个尺寸较小但精度较高的骨架机理可用于发动机燃烧过程的高保真数值模拟。  相似文献   
999.
A computational model is developed and applied to study the vaporisation behaviour of three liquid fuels. This fundamental study is motivated by a need to understand how the performance of direct-injection-spark-ignition (DISI) engines may be affected by changes in fuel composition, especially alcohols. Currently, most DISI engines are designed for homogeneous-charge combustion, where the in-cylinder fuel injection, vaporisation and mixing is accomplished during the intake and early in the compression process. Thus the temperature and pressure are low, compared to post-compression conditions. The two-phase axisymmetric model is based upon an ideal opposed stagnation flow field. Liquid droplets are carried in one air stream that is met by an opposed air flow. Because of stagnation-flow similarity, the mathematical model can be represented as a one-dimensional boundary-value problem. Results show significant differences between methanol, ethanol and heptane fuels, which have potentially important impacts on the design and modification of fuel-injection systems for direct-injection engines with alternative fuels.  相似文献   
1000.
Electrocatalytic effect of the untreated and TiO2+polyacrylonitrile (PAN) modified discarded battery coal (DBC) and pencil graphite electrodes (PGE) were evaluated in fuel cell (FC) applications. TiO2+PAN solution is coated on PGE and DBC electrodes by electrospinning. According to the FESEM and EDS characterizations, TiO2 and PAN nanofibers are found to be approximately 40 and 240 nm in size. TiO2+PAN/PGE showed the best FC performances with 2.00 A cm–2 current density and 5.05 W cm–2 power density values, whereas TiO2+PAN/DBC showed 0.68 A cm–2 current density and 0.62 W cm–2 power density values. Electrochemical characterizations of PGE and TiO2+PAN/PGE electrodes were investigated by cyclic voltammetry and electrochemical impedance spectroscopy. Finally, long-term FC measurement results of developed electrodes exhibited very reasonable recovery values. Along with the comparison of the electrode performances, the recovery of DBCs as electrodes for renewable energy production has been achieved.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号