首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   779篇
  免费   26篇
  国内免费   90篇
化学   414篇
晶体学   22篇
力学   30篇
数学   14篇
物理学   415篇
  2024年   13篇
  2023年   124篇
  2022年   25篇
  2021年   34篇
  2020年   34篇
  2019年   29篇
  2018年   26篇
  2017年   50篇
  2016年   34篇
  2015年   34篇
  2014年   51篇
  2013年   41篇
  2012年   39篇
  2011年   73篇
  2010年   37篇
  2009年   39篇
  2008年   36篇
  2007年   28篇
  2006年   23篇
  2005年   19篇
  2004年   14篇
  2003年   11篇
  2002年   10篇
  2001年   9篇
  2000年   5篇
  1999年   2篇
  1998年   3篇
  1997年   6篇
  1996年   7篇
  1995年   2篇
  1994年   4篇
  1992年   9篇
  1991年   1篇
  1990年   6篇
  1988年   4篇
  1986年   1篇
  1985年   3篇
  1984年   2篇
  1982年   1篇
  1980年   1篇
  1979年   2篇
  1978年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有895条查询结果,搜索用时 31 毫秒
51.
The ferromagnetic manganese doped TiN films were grown by plasma assisted molecular beam epitaxy on MgO(001) substrates. The nitrogen concentration and the ratio of manganese at Ti lattice sites increase after the plasma annealing post treatment. TiN(002) peak shifts toward low angle direction and TiN(111) peak disappears after the post treatment. The lattice expansion and peak shift are mainly ascribed to the reduction of nitrogen vacancies in films. The magnetism was suppressed in as-prepared sample due to the pinning effect of the nitrogen vacancies at defect sites or interface. The magnetism can be activated by the plasma implantation along with nitrogen vacancies reduce. The decrease of nitrogen vacancies leads to the enhancement of ferromagnetism.  相似文献   
52.
Xiaowei Li  Qiaofeng Tan  Guofan Jin 《Optik》2011,122(23):2078-2082
The solar cell efficiency can be improved by antireflection gratings. In this paper, the antireflection gratings with different symmetrical surface profiles are investigated by numerical simulations based on the Rigorous Coupled-Wave Analysis. Simulated results show that the antireflection performance of sharp profile such as quadratic profile has a significant improvement compared with triangular and parabolic profiles, while the top cutoff in the grating tip will severely influence the antireflection performance. Meanwhile, proper length of flat region between grating features in the nonclose-packed triangular antireflection grating can have better antireflection performance than the close-packed counterpart for the same grating period and height. Such antireflection gratings with different surface profiles may offer attractive solutions to current commercial silicon solar cell, as well as organic and other semiconductor material based solar cells.  相似文献   
53.
Solar cell encapsulating film based on ethylene vinyl acetate copolymer (EVA) was modified by using bacterial cellulose (BC) nanofibres. Bacterial cellulose was chemically modified with propionic anhydride prior to compounding with EVA in a twin screw extruder. The effects of fibre content on the mechanical, thermal, optical and barrier properties of the EVA composite films were investigated. Better mechanical and barrier properties of the EVA films were obtained when the modified BC nanofibres were used. The results were ascribed to the different chemical functional groups on the fibre surface, as verified by FTIR spectra. Deacetylation of the EVA was delayed and visible light transparency of the EVA films above 75% was retained. Overall, our study showed that it was possible to improve the barrier properties of EVA film without sacrificing much transparency by using a suitable type and content of cellulose nanofibres.  相似文献   
54.
The organic–inorganic hybrid perovskite CH3NH3PbI3 is becoming an interesting material in the field of energy harvesting. This material is one of the cleanest and cheapest components in solar cells which is available in ample amounts. However, most of the previous research work was done on thin film of this material. In the present work we describe the preparation of a powder containing nanoparticles of CH3NH3PbI3 using a sonochemical method. Characterization of the product was done by various methods, such as HRTEM, FTIR, PL, DLS and XRD. The particles were found to be highly crystalline (tetragonal crystal structure), polygonal in shape and having diameters of 10–40 nm.  相似文献   
55.
《Current Applied Physics》2014,14(6):881-885
We report on the fabrication of wheat-like CdSe/CdTe thin film heterojunction solar cells made using a simple electrochemical deposition method and close-spaced sublimation technology on indium tin oxide (ITO) substrates. Structural, optical, and electrical properties of the wheat-like CdSe/CdTe thin film junctions were characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), energy dispersive spectrometry (EDS), ultraviolet–visible (UV–vis) absorption spectrum and Keithley 2400 analysis. A significant red-shift of the absorption edge is observed in this heterojunction. The heterostructure is composed of the wheat-like CdSe array and CdTe thin film, showing optical properties typical of type II heterostructures that are suited for photovoltaic applications. A photocurrent density of 8.34 mA/cm2 has been obtained under visible light illumination of 100 mW/cm2. This study demonstrates that the electrochemical deposition and the close-spaced sublimation technology, which are easily adapted to other chemical systems, are promising techniques for large-scale fabrication of low-cost heterojunction solar cells.  相似文献   
56.
High efficiency solar cells require good back surface field passivation and high back reflectance in the rear Al region. In module processes, wafer-based solar cell can break through stress during soldering uneven rear aluminum surfaces - a serious problem that affects throughput. This work examined rear surfaces with respect to controllable process factors such as ramping and cooling rates during rapid thermal processing, and the fineness of aluminum powder used in the screen-printed paste. A faster ramp up rate resulted in a uniform temperature gradient between the aluminum and silicon surfaces. As a results, the bumps on the aluminum surface were small and of high density. Fine aluminum metal powder in the paste for screen-printing contact points resulted in large distribution, high density bumps. Bumps formed during cooling in metallization, their sizes and densities were dependent the on uniformity of the aluminum and silicon liquid wetting of the silicon surface.  相似文献   
57.
Slowly rotating main-sequence stars with deep convective zones have activity cycles like the sun's. The solar cycle is aperiodic and modulated to give intervals of reduced activity. A simple sixth-order system, obtained by truncating the dynamo equations, has solutions that mimic this behavior. The transition to chaos is analyzed and the astrophysical significance of these results is discussed.  相似文献   
58.
59.
A water-soluble composite of oxidised multi-wall carbon nanotubes and sulphonic acid sodium salt derivatised copper phthalocyanine for application in bi-layer organic solar cells is reported. Measurements of the topography of thin films of this novel material and of the valence electronic structure of its two components are used to rationalise the photovoltaic characteristics of a model organic heterojunction utilising the nanocomposite as the hole-extracting electrode and donor layer.  相似文献   
60.
Several approaches have been investigated to prepare fluorite-type compositions within the (1−x) CeO2-xYO1.5 system. The optical properties of the resulting modified-ceria materials have been characterized in order to evaluate their potential abilities as inorganic UV absorbers. Diffuse reflectance analyses reveal a strong optical absorption between 390 and 400 nm for all substituted compositions and the spectral selectivities are estimated suitable for the targeted application. Additionally, time resolved microwave conductivity (TRMC) and phenol photodegradation analyses do not indicate any photocalatytic activity for these compositions. Aqueous colloidal suspensions of the Ce0.7Y0.3O1.85 UV absorber have been carried out.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号