首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2878篇
  免费   1193篇
  国内免费   605篇
化学   2855篇
晶体学   54篇
力学   261篇
综合类   12篇
数学   138篇
物理学   1356篇
  2024年   17篇
  2023年   87篇
  2022年   180篇
  2021年   227篇
  2020年   349篇
  2019年   306篇
  2018年   294篇
  2017年   375篇
  2016年   438篇
  2015年   386篇
  2014年   452篇
  2013年   486篇
  2012年   313篇
  2011年   218篇
  2010年   118篇
  2009年   80篇
  2008年   58篇
  2007年   36篇
  2006年   28篇
  2005年   19篇
  2004年   34篇
  2003年   21篇
  2002年   14篇
  2001年   20篇
  2000年   17篇
  1999年   13篇
  1998年   8篇
  1997年   11篇
  1996年   12篇
  1995年   7篇
  1994年   3篇
  1993年   4篇
  1992年   4篇
  1991年   6篇
  1990年   5篇
  1989年   5篇
  1988年   2篇
  1987年   4篇
  1986年   4篇
  1985年   8篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1980年   1篇
  1957年   1篇
排序方式: 共有4676条查询结果,搜索用时 250 毫秒
121.
Graphene is a 2D sp2‐hybridized carbon sheet and an ideal material for the adsorption‐based separation of organic pollutants. However, such potential applications of graphene are largely limited, owing to their poor solubility and extensive aggregation properties through graphene? graphene interactions. Herein, we report the synthesis of graphene‐based composites with γ‐Fe2O3 nanoparticle for the high‐performance removal of endocrine‐disrupting compounds (EDC) from water. The γ‐Fe2O3 nanoparticles partially inhibit these graphene? graphene interactions and offer water dispersibility of the composite without compromising much of the high surface area of graphene. In their dispersed form, the graphene component offers the efficient adsorption of EDC, whilst the magnetic iron‐oxide component offers easier magnetic separation of adsorbed EDC.  相似文献   
122.
Graphene sheets were assembled on anion exchange resin (AER) microspheres based on the electrostatic interactions between graphene oxide and AER and subsequent chemical reduction. The prepared graphene‐coated AER microspheres were characterized by scanning electron microscopy, X‐ray diffraction, and Fourier transform infrared spectroscopy. They were then embedded in the bores of pipette tips to fabricate disposable electrodes for electrochemical sensing. The workability and performance of the novel electrodes were examined by analyzing the electrochemical behavior of the electrodes for the sensing of ascorbic acid, dopamine, uric acid, acetaminophen, aniline, and glucose by cyclic voltammetry and amperometry. The advantages of the electrodes include ease of fabrication, low cost, pronounced electrocatalytic activity, and rapid response. Thus, they hold great promise for a wide range of applications.  相似文献   
123.
Density functional theory and GGA-PW91 exchange correlation function were performed to simulate the bonding behavior of hydroxyl and epoxy groups on the graphene surface. We compared the different binding energies for two epoxy groups, as well as one hydroxyl group and one epoxy group on all possible positions within a 6-fold ring, respectively. The calculated results suggest that two oxygen-containing groups always tend to bind with the neighboring carbon atoms at the opposite sides. Moreover, two hydroxyl groups on the meta position are unstable, and one of the hydroxyl groups easily migrates to the para position. In contrast to the disperse arrangement, the aggregation of multiply hydroxyl groups largely enhances the binding energy of every hydroxyl group. It is worth noting that the binding sites and hydrogen bonds play an important role in stability. Our work further points out the number of oxygen-containing groups and the location of oxide region largely influence the electronic properties of graphene oxide.  相似文献   
124.
We measured the S- and P-order parameters of flow-induced ordered graphene oxide (GO) particles and the flow velocity profiles for a flowing aqueous GO dispersion in a tube, by using an optical method. The order parameters clearly exhibit increasing concentric biaxial ordering as the flow velocity increases, with the exception of a disordered centre. Newtonian to non-Newtonian transition in the flow velocity profile is found, changing from a parabolic shape to a fuller shape at very low Reynolds numbers less than 10. This is attributed to the shear thinning effect (i.e., an ordering-induced reduction in viscosity). In the Newtonian flow, a uniaxial ordering was dominant; whereas a biaxial ordering sharply increased in the non-Newtonian flow, indicating that both the ordering of GO particles and the interparticle interactions influence the flow profile transition.  相似文献   
125.
ABSTRACT

In this work, a novel layered sorbent for microextraction by packed sorbent (MEPS) was introduced, which has been prepared by coating graphene oxide/polyamide (GO/PA) nanocomposite (NC) onto cellulose paper through solvent exchange method. Scanning electron microscopy (SEM) was applied to investigate the surface characteristic and morphology of PA and GO/PA NC coated on cellulose paper. The prepared MEPS device was used for extraction of organophosphorous pesticides (OPPs) including chlorpyrifos, fenthion, fenithrothion, ethion, edifenphos and phosalone in environmental aqueous samples followed by detection using gas chromatography-flame ionisation detector (GC-FID). Important parameters affecting the MEPS method including pH of sample solution, extraction draw-discard cycles, sorbent layers, desorption solvent volume and desorption draw-eject number were studied and optimised using central composite design (CCD). Based on the method validation, limits of detection (LODs) were in the range of 0.2–1 µg L?1. The calibration graphs for chlorpyrifos, fenthion and edifenphos are linear in the concentration range of 1 to 500 µg L?1; for ethion and phosalone are linear in the range of 1–1000 µg L?1 and for fenithrothion is linear in the range of 3–1000 µg L?1. The method precision (RSD %) with six replicates determinations was in the range of 3 to 9.4 % and 3.9 to 11.9% for distilled water and spiked river water sample, respectively, at the concentration level of 300 µg L?1 . The developed method was applied successfully to determine OPP compounds in river, dam and tap water samples; accordingly, the relative recoveries (RR%) were obtained in the range of 77.8 to 113.3%.  相似文献   
126.
Recently, the binding ability of DNA on GO and resulting nuclease resistance have attracted increasing attention, leading to new applications both in vivo and in vitro. In vivo, nucleic acids absorbed on GO can be effectively protected from enzymatic degradation and biological interference in complicated samples, making it useful for targeted delivery, gene regulation, intracellular detection and imaging with high uptake efficiencies, high intracellular stability, and very low toxicity. In vitro, the adsorption of ssDNA on GO surface and desorption of dsDNA or well‐folded ssDNA from GO surface result in the protection and deprotection of DNA from nucleic digestion, respectively, which has led to target‐triggered cyclic enzymatic amplification methods (CEAM) for amplified detection of analytes with sensitivity 2–3 orders of magnitude higher than that of 1:1 binding strategies. This Concept article explores some of the latest developments in this field.  相似文献   
127.
Graphene and graphene oxides are materials of significant interest in electrochemical devices such as supercapacitors, batteries, fuel cells, and sensors. Graphene oxides and reduced graphenes are typically prepared by oxidizing graphite in strong mineral acid mixtures with chlorate (Staudenmaier, Hofmann) or permanganate (Hummers, Tour) oxidants. Herein, we reveal that graphene oxides pose inherent electrochemistry, that is, they can be oxidized or reduced at relatively mild potentials (within the range ±1 V) that are lower than typical battery potentials. This inherent electrochemistry of graphene differs dramatically from that of the used oxidants. Graphene oxides prepared using chlorate exhibit chemically irreversible reductions, whereas graphene oxides prepared through permanganate‐based methods exhibit very unusual inherent chemically reversible electrochemistry of oxygen‐containing groups. Insight into the electrochemical behaviour was obtained through cyclic voltammetry, chronoamperometry, and X‐ray photoelectron spectroscopy experiments. Our findings are of extreme importance for the electrochemistry community as they reveal that electrode materials undergo cyclic changes in charge/discharge cycles, which has strong implications for energy‐storage and sensing devices.  相似文献   
128.
129.
Herein, we present an electrochemically assisted method for the reduction of graphene oxide (GO) and the assembly of polyoxometalate clusters on the reduced GO (rGO) nanosheets for the preparation of nanocomposites. In this method, the Keggin‐type H4SiW12O40 (SiW12) is used as an electrocatalyst. During the reduction process, SiW12 transfers the electrons from the electrode to GO, leading to a deep reduction of GO in which the content of oxygen‐containing groups is decreased to around 5 %. Meanwhile, the strong adsorption effect between the SiW12 clusters and rGO nanosheets induces the spontaneous assembly of SiW12 on rGO in a uniformly dispersed state, forming a porous, powder‐type nanocomposite. More importantly, the nanocomposite shows an enhanced capacity of 275 mAh g?1 as a cathode active material for lithium storage, which is 1.7 times that of the pure SiW12. This enhancement is attributed to the synergistic effect of the conductive rGO support and the well‐dispersed state of the SiW12 clusters, which facilitate the electron transfer and lithium‐ion diffusion, respectively. Considering the facile, mild, and environmentally benign features of this method, it is reasonable as a general route for the incorporation of more types of functional polyoxometalates onto graphene matrices; this may allow the creation of nanocomposites for versatile applications, for example, in the fields of catalysis, electronics, and energy storage.  相似文献   
130.
Restacking of graphene sheets to a graphite‐like structure is a prevailing problem that is known to compromise the performance of individual graphene sheets in an assembled bulk form. To address this common problem efficiently and monitor the structure and quality of graphene products comprehensively, it is highly desirable to develop reliable metrology techniques for characterising graphene‐based materials on a bulk assembly level and in a quantitative manner. Here, by revisiting the physicochemical principle of electrosorption, we propose a simple electrochemical approach, namely dynamic electrosorption analysis (DEA), as an easily accessible and effective technique for evaluation of the self‐stacking behaviour of graphene. Taking multilayered chemically converted graphene films as a model, we demonstrate that the DEA technique can effectively reveal very subtle variation in accessible surface area and pore size of graphene assemblies in the liquid phase and thus can provide useful insights to the experimental design relating to restacking control. This work also reveals the huge effect some routine processing conditions, such as heat treatment and drying, can have on the structure and performance of graphene‐based bulk materials, providing useful guidance for future manufacturing of this class of materials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号