首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   374篇
  免费   18篇
  国内免费   3篇
化学   312篇
晶体学   6篇
力学   12篇
数学   5篇
物理学   60篇
  2024年   1篇
  2023年   30篇
  2022年   8篇
  2021年   14篇
  2020年   10篇
  2019年   14篇
  2018年   5篇
  2017年   11篇
  2016年   7篇
  2015年   11篇
  2014年   14篇
  2013年   20篇
  2012年   18篇
  2011年   25篇
  2010年   32篇
  2009年   39篇
  2008年   26篇
  2007年   19篇
  2006年   15篇
  2005年   10篇
  2004年   14篇
  2003年   13篇
  2002年   3篇
  2001年   6篇
  2000年   2篇
  1999年   4篇
  1998年   4篇
  1997年   5篇
  1996年   5篇
  1995年   5篇
  1994年   2篇
  1993年   1篇
  1991年   1篇
  1970年   1篇
排序方式: 共有395条查询结果,搜索用时 46 毫秒
391.
By designing and using a new flexible bis(pyrimidine)-bis(amide) ligand H2L [H2L=N,N′-bis(4-pyrimidinecarboxamido)-1,3-propane], two new polyoxometalate (POM)-based metal-organic complexes (MOCs), H3[Cu2(L)2(PMo12O40)] ( 1 ) and [Cu2(H2L)2(β-Mo8O26)] ( 2 ), were synthesized under solvothermal and hydrothermal conditions, respectively. In complexes 1 and 2 , metal-organic units and POM anions are linked together to form two distinct 2D structures. The [PMo12O40]3− (PMo12) anions were used as μ4-bridging ligands in complex 1 and linked the 1D [Cu(L)]n metal-organic chains to form a 2D layered structure. The [β-Mo8O26]4− (Mo8) anions adopted two diverse coordination modes in complex 2 and connected the 1D [Cu(H2L)]n2n+ metal-organic chains to generate a 2D grid structure. Complexes 1 – 2 can serve as electrode materials of supercapacitor and show large specific capacitances, up to 1065 and 956 F g−1 at current density of 2 A g−1, respectively, which surpass the parent POM and most of the previous reported POM-based electrode materials, thus demonstrating the important role of introducing metal-organic units in improving capacitive performances. Besides, the electrocatalytic redox activities of complexes 1 – 2 were also studied, both of them can be used as electrochemical sensors to detect Cr(VI) ions. They possess high sensitivity of 0.537 and 0.455 μA μM−1 and low detection limits of 0.16 and 0.33 μM, which are below the maximum content of Cr(VI) in groundwater required by the WHO.  相似文献   
392.
Condensed films of functional luminophores dominated by the magnitude and dimensionality of the intermolecular interactions play important roles in sensing performance. However, controlling the molecular assembly and regulating photophysical properties remain challenging. In this study, a new luminophore, ortho-PBI-Au, was synthesized by anchoring a cyclometalated alkynyl-gold(III) unit at the ortho-position of perylene bisimide. An unprecedented T-type packing model driven by weak Au-π interaction and Au−H bonds was observed, laying foundation for striking properties of the luminophore. Controlled assembly of ortho-PBI-Au at the air-water interface, realized using the classical Langmuir–Schaeffer technique, afforded the obtained luminescent films with different packing structures. With an optimized film, sensitive, selective, and rapid detection of a hazardous new psychoactive substance, phenylethylamine (PEA), was achieved. The detection limit, response time, and recovery time were <4 ppb, <1 s, and <5 s, respectively, surpassing the performance of the PEA sensors known thus far. The relationship between the characters of films and the sensing performance was systematically examined by grey relational analysis (GRA). The present study suggests that designing novel molecular aggregation with definite adlayer structure is a crucial strategy to enhance the sensing performance, which could be favorable for the film-based fluorescent sensors.  相似文献   
393.
A fluorescent dinuclear cadmium(II) based discrete metal complex of composition [CdII2L(μ-Cl)Cl2]( 1 ) is used {HL=2,6-bis[2-(methylamino)ethyliminomethyl]-4-Ethylphenol} for the specific recognition of 2,4,6-trinitrophenol (picric acid; PA) via fluorescence quenching phenomenon among various nitroaromatic compounds through a chemodosimetric approach. It has been established that 1 is a chemodosimeter in pure water. We have successfully been able to isolate three compounds: chemodosimeter 1 ; an intermediate complex 2 of composition [CdII(LH2)Cl2](Picrate) and final association complex 3 of composition [NH3(CH2CH2)NH2CH3](Picrate)2. Compounds have been characterised by CHN elemental analyses, single crystal X-ray crystallography, PXRD, NMR and FTIR. Selective interaction of 1 with PA was evaluated by fluorescence, UV-Vis and life time measurements. Fluorescence quenching of 1 occurs definitely due to the formation of compound 3 via intermediate 2 involving partial decomplexation, hydrolysis and proton transfer phenomena in solution during the course of sensing. The quenching constant (Ksv), association constant (Ka) and detection limit (LOD) of the complex 1 for picric acid are ∼1.55×105 M−1, ∼1.8×1010 M−2 and ∼0.47 μM (0.108 ppm), respectively. Mechanism of sensing is proposed and the very rare case of isolation and characterization of intermediate in picric acid sensing is discussed.  相似文献   
394.
Electrochemical mass spectrometry (EC-MS) is a powerful tool to capture and analyze the intermediates and products during electrochemical reactions. This hyphenated technique combines electrochemistry with mass spectrometry using specific apparatuses, which helps researchers study mechanisms of redox reactions by in situ detecting chemical composition changes. Recently, various EC-MS methods have been applied in a series of electrochemical reactions to reveal the mechanisms, mainly in the areas of electrochemical sensors, organic electrochemistry, and electrocatalysis. In this review, we intend to summarize the recent advances in real-time analysis of different types of electrochemical reactions by EC-MS and offer an outlook on the perspectives in these areas.   相似文献   
395.
In this work, the anion-responsive conduct of a Ru(II)-bipyridine complex incorporating pyrazolyl-bis (benzimidazole) ligand is thoroughly investigated in acetonitrile and water via absorption and emission spectroscopy as well as by square-wave voltammetry (SWV). Substantial alteration of the photo-redox behavior of the complex is observed in the presence of the selected anions. The free form of the complex exhibits emission indicating the “on-state”, while inclusion of anions leads to quenching of emission and represents the “off-state”. The restoration of the initial state of the complex is feasible in the presence of acid and the process is reversible and can be recycled. In essence, the complex functions as anion- and acid-responsive molecular switches. Additionally, we applied herein neural network based deep learning methodologies, viz. Artificial Neural Networks (ANNs) and Adaptive Neuro-Fuzzy Inference System (ANFIS)} for thorough analysis and fully understand the multi-channel anion sensing behavior of the complex.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号