首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   242篇
  免费   1篇
  国内免费   2篇
化学   7篇
力学   12篇
数学   36篇
物理学   190篇
  2023年   1篇
  2021年   2篇
  2020年   2篇
  2019年   5篇
  2018年   3篇
  2017年   3篇
  2016年   4篇
  2015年   4篇
  2014年   10篇
  2013年   20篇
  2012年   8篇
  2011年   18篇
  2010年   25篇
  2009年   17篇
  2008年   14篇
  2007年   15篇
  2006年   8篇
  2005年   6篇
  2004年   2篇
  2003年   4篇
  2002年   3篇
  2001年   4篇
  2000年   3篇
  1999年   6篇
  1998年   7篇
  1997年   5篇
  1996年   3篇
  1995年   5篇
  1994年   5篇
  1993年   5篇
  1992年   5篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1986年   2篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
排序方式: 共有245条查询结果,搜索用时 31 毫秒
111.
112.
A direct method based on renormalization group method (RGM) is proposed for determining the analytical approximation of weakly nonlinear continuous systems. To demonstrate the application of the method, we use it to analyze some examples. First, we analyze the vibration of a beam resting on a nonlinear elastic foundation with distributed quadratic and cubic nonlinearities in the cases of primary and subharmonic resonances of the nth mode. We apply the RGM to the discretized governing equation and also directly to the governing partial differential equations (PDE). The results are in full agreement with those previously obtained with multiple scales method. Second, we obtain higher order approximation for free vibrations of a beam resting on a nonlinear elastic foundation with distributed cubic nonlinearities. The method is applied to the discretized governing equation as well as directly to the governing PDE. The proposed method is capable of producing directly higher order approximation of weakly nonlinear continuous systems. It is shown that the higher order approximation of discretization and direct methods are not in general equal. Finally, we analyze the previous problem in the case that the governing differential equation expressed in complex-variable form. The results of second order form and complex-variable form are not in agreement. We observe that in use of RGM in higher order approximation of continuous systems, the equations must not be treated in second order form.  相似文献   
113.
Fourth order derivative gravity in 3+13+1 dimensions is perturbatively renormalizable and is shown to describe a unitary theory of gravitons in a limited coupling parameter space. The running gravitational constant which includes graviton contribution is computed. Generically, gravitational Newton?s constant vanishes at short distances in this perturbatively renormalizable and unitary theory.  相似文献   
114.
We formulate conditions for almost-commutative (spacetime) manifolds under which the asymptotically expanded spectral action is renormalizable. These conditions are of a graph-theoretical nature, involving the Krajewski diagrams that classify such geometries. This applies in particular to the Standard Model of particle physics, giving a graph-theoretical argument for its renormalizability. A promising potential application is in the selection of physical (renormalizable) field theories described by almost-commutative geometries, thereby going beyond the Standard Model.  相似文献   
115.
It is pointed out that increasingly attractive interactions, represented by partially concave local potential in the Lagrangian, may lead to the degeneracy of the blocked, renormalized action at the gliding cutoff scale by tree-level renormalization. A quantum counterpart of this mechanism is presented in the two-dimensional sine-Gordon model. The presence of Quantum Censorship is conjectured which makes the loop contributions pile up during the renormalization and thereby realize an approximate semiclassical effect.  相似文献   
116.
Can Güven  Michael Hinczewski 《Physica A》2010,389(15):2915-2919
The tensor renormalization group (TRG) is a powerful new approach for coarse-graining classical two-dimensional (2D) lattice Hamiltonians. It uses the intuitive framework of traditional position space renormalization group methods-analyzing flows in the space of Hamiltonian parameters-but can be systematically improved to yield thermodynamic properties at much higher precision. We present initial results demonstrating that the TRG can be generalized to quenched random systems, applying it to obtain the phase diagram of a bond-diluted triangular lattice Ising ferromagnet. This opens a variety of potential future applications, most prominently spin glasses.  相似文献   
117.
We present an overview of low-momentum two-nucleon and many-body interactions and their use in calculations of nuclei and infinite matter. The softening of phenomenological and effective field theory (EFT) potentials by renormalization group (RG) transformations that decouple low and high momenta leads to greatly enhanced convergence in few- and many-body systems, while maintaining a decreasing hierarchy of many-body forces. This review surveys the RG-based technology and results, discusses the connections to chiral EFT, and clarifies various misconceptions.  相似文献   
118.
We evaluate the phase-coherent transport of electrons along linear structures of varying length, which are made from two types of potential wells set in either a periodic or a Fibonacci quasi-periodic sequence. The array is described by a tight-binding Hamiltonian and is reduced to an effective dimer by means of a decimation-renormalization method, extended to allow for connection to external metallic leads, and the transmission coefficient is evaluated in a T-matrix-scattering approach. Parallel behaviors are found for the energy dependence of the density of electron states and of the transmittivity of the array. In particular, we explicitly show that on increasing its length the periodic array undergoes a metal–insulator transition near single occupancy per dot, whereas prominent pseudo-gaps emerge away from the band center in the Fibonacci-ordered array.  相似文献   
119.
120.
This work addresses the problem of infrared mass renormalization for a non-relativistic electron minimally coupled to the quantized electromagnetic field (the standard, translationally invariant system of an electron in non-relativistic QED). We assume that the interaction of the electron with the quantized electromagnetic field is subject to an ultraviolet regularization and an infrared regularization parametrized by σ>0. For the value p=0 of the conserved total momentum of electron and photon field, bounds on the renormalized mass are established which are uniform in σ→0, and the existence of a ground state is proved. For |p|>0 sufficiently small, bounds on the renormalized mass are derived for any fixed σ>0. A key ingredient of our proofs is the operator-theoretic renormalization group based on the isospectral smooth Feshbach map. It provides an explicit, finite algorithm for determining the renormalized electron mass at p=0 to any given precision.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号