首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   370篇
  免费   11篇
  国内免费   28篇
化学   45篇
力学   235篇
综合类   1篇
数学   55篇
物理学   73篇
  2023年   4篇
  2022年   6篇
  2021年   2篇
  2020年   13篇
  2019年   10篇
  2018年   3篇
  2017年   10篇
  2016年   9篇
  2015年   17篇
  2014年   34篇
  2013年   28篇
  2012年   13篇
  2011年   33篇
  2010年   18篇
  2009年   27篇
  2008年   29篇
  2007年   20篇
  2006年   14篇
  2005年   17篇
  2004年   10篇
  2003年   19篇
  2002年   8篇
  2001年   8篇
  2000年   3篇
  1999年   4篇
  1998年   7篇
  1997年   3篇
  1996年   7篇
  1995年   4篇
  1994年   3篇
  1993年   5篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1979年   4篇
  1978年   1篇
  1971年   1篇
排序方式: 共有409条查询结果,搜索用时 31 毫秒
401.
This paper is Part III of the study on blending surfaces by partial differential equations (PDEs). The blending surfaces in three dimensions (3D) are taken into account by three parametric functions, x(r,t),y(r,t) and z(r,t). The boundary penalty techniques are well suited to the complicated tangent (i.e., normal derivative) boundary conditions in engineering blending. By following the previous papers, Parts I and II in Li (J. Comput. Math. 16 (1998) 457–480; J. Comput. Appl. Math. 110 (1999) 155–176) the corresponding theoretical analysis is made to discover that when the penalty power σ=2, σ=3 (or 3.5) and 0<σ1.5 in the boundary penalty finite element methods (BP-FEMs), optimal convergence rates, superconvergence and optimal numerical stability can be achieved, respectively. Several interesting samples of 3D blending surfaces are provided, to display the remarkable advantages of the proposed approaches in this paper: unique solutions of blending surfaces, optimal blending surfaces in minimum energy, ease in handling the complicated boundary constraint conditions, and less CPU time and computer storage needed. This paper and Li (J. Comput. Math. 16 (1998) 457–480; J. Comput. Appl. Math.) provide a foundation of blending surfaces by PDE solutions, a new trend of computer geometric design.  相似文献   
402.
Electrical parameters like resistance and quality factor of a quartz crystal resonator cannot be determined through vibration analysis without considering the presence of material dissipation. In this study, we use the first-order Mindlin plate equations of piezoelectric plates for thickness-shear vibrations of a simple resonator model with partial electrodes. We derive the expressions of electrical parameters with emphasis on the resistance that is related to the imaginary part of complex elastic constants, or the viscosity, of quartz crystal. Since all electrical parameters are frequency dependent, this procedure provides the chance to study the frequency behavior of crystal resonators with a direct formulation. We understand that the electrical parameters are strongly affected by the manufacturing process, with the plating techniques in particular, but the theoretical approach we presented here will be the first step for the precise estimation of such parameters and their further applications in the analysis of nonlinear behavior of resonators. We calculated the parameters from our simple resonator model of AT-cut quartz crystal with the first-order Mindlin plate theory to demonstrate the procedure and show that the numerical results are consistent with earlier measurements.  相似文献   
403.
In this paper a non-polynomial sextic spline function is applied to the numerical solution of a linear fourth-order two-point boundary-value problem occurring in a plate deflection theory. We have developed a non-polynomial sextic spline, which reduces to ordinary sextic spline as θ → 0. Spline relations and error estimates are given. Direct methods of order two, four and six have been obtained. Numerical results are provided to demonstrate the superiority of our methods.  相似文献   
404.
Limit Cycle Oscillations (LCOs) involving Delta wings are an important area of research in modern aeroelasticity. Such phenomena can be the result of geometric or aerodynamic nonlinearity. In this paper, a flexible half-span Delta wing is tested in a low speed wind tunnel in order to investigate its dynamic response. The wing is designed to be more flexible than the models used in previous research on the subject in order to expand the airspeed range in which LCOs occur. The experiments reveal that this wing features a very rich bifurcation behavior. Three types of bifurcation are observed for the first time for such an aeroelastic system: subcritical bifurcations, period-doubling/period-halving and nontypical bifurcations. They give rise to a great variety of LCOs, even at very low angles of attack. The LCOs resulting from the nontypical bifurcation display Hopf-type behavior, i.e. having fundamental frequencies equal to one of the linear modal frequencies. All of the other LCOs have fundamental frequencies that are unrelated to the underlying linear system modes.  相似文献   
405.
This paper investigates the energy harvested from the flutter of a plate in an axial flow by making use of piezoelectric materials. The equations for fully coupled linear dynamics of the fluid–solid and electrical systems are derived. The continuous limit is then considered, when the characteristic length of the plate's deformations is large compared to the piezoelectric patches' length. The linear stability analysis of the coupled system is addressed from both a local and global point of view. Piezoelectric energy harvesting adds rigidity and damping on the motion of the flexible plate, and destabilization by dissipation is observed for negative energy waves propagating in the medium. This result is confirmed in the global analysis of fluttering modes of a finite-length plate. It is finally observed that waves or modes destabilized by piezoelectric coupling maximize the energy conversion efficiency.  相似文献   
406.
The aerodynamic performance of a flexible membrane flapping wing has been investigated here. For this purpose, a flapping-wing system and an experimental set-up were designed to measure the unsteady aerodynamic forces of the flapping wing motion. A one-component force balance was set up to record the temporal variations of aerodynamic forces. The flapping wing was studied in a large low-speed wind tunnel. The lift and thrust of this mechanism were measured for different flapping frequencies, angles of attack and for various wind tunnel velocities. Results indicate that the thrust increases with the flapping frequency. An increase in the wind tunnel speed and flow angle of attack leads to reduction in the thrust value and increases the lift component. The aerodynamic and performance parameters were nondimensionalized. Appropriate models were introduced which show its aerodynamic performance and may be used in the design process and also optimization of the flapping wing.  相似文献   
407.
Hydrophobic surfaces have gained extensive attention in recent decades for their potential applications. The hydrophobic properties of dragonfly's (Pantala flavescens) wings were measured, and the water contact angles (WCAs) of the distal and basal part of a dragonfly's wing were 134.9° and 125.8°, respectively. Images obtained by optical microscopy and scanning electron microscopy showed the microstructures and nanostructures on the wing surface. Microstructures appeared as cell block patterns, and the size of the blocks decreased from the basal to distal part. However, no significant differences of chemical composition between the two parts were detected by X‐ray photoelectron spectroscopy. To understand the correlation between the structures and WCA, a double roughness structure model was built theoretically with simplified lattice patterns, and the theoretical model was well fitted with empirical wettability of the dragonfly's wing. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
408.
蜻蜓翅膀具有独特的褶皱状形貌.研究者们致力于利用仿生学原理,设计在低雷诺数条件下具有更优气动性能的褶皱翼型.本文采用计算流体力学方法,求解二维不可压Navier-Stokes方程组,探讨了四种翼型(平板翼型、流线翼型、小幅度褶皱翼型和大幅度褶皱翼型)的气动表现.在低雷诺数条件下得到以下结果:(1) 较小幅度的褶皱结构有利于增加升力和减小阻力.(2) 雷诺数变化时褶皱翼型的升力系数呈非线性变化;在特定雷诺数区间,幅度相近的褶皱翼型会发生相对气动优势的转变.(3) 褶皱结构内的回流区通过减小粘性阻力,使得翼型总阻力下降.(4) 翼型前缘的极小区域会产生脉冲高升力,对升力表现产生较大影响.这些结果表明,调整褶皱幅度是实现褶皱翼型气动优化的有效方案.  相似文献   
409.
基于弯扭组合梁元对大展弦比多段折叠翼的离散突风响应特性进行了研究。首先,将平面一般梁元叠加扭转自由度得到一种新的弯扭组合梁元,建立包含折叠角参数的缩减有限元模型。其次,对片条理论进行修正以得到不同折叠角度下弯扭组合梁元上的气动力,构建多段折叠翼在离散突风作用下的动力学方程。最后,引入Laplace变换处理动力学方程中的积分微分项,得到折叠角对翼尖加速度、翼根弯/扭矩等响应的影响。一个近地面无人机三段式折叠翼的算例结果表明,机翼固有频率会随着折叠角的变化呈现非线性性态,相比舒展状态,折叠角的存在虽不能明显减小翼尖加速度,但能够有效减小翼根弯/扭矩响应。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号