首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   211篇
  免费   0篇
化学   3篇
晶体学   3篇
力学   178篇
数学   14篇
物理学   13篇
  2020年   1篇
  2019年   3篇
  2018年   1篇
  2017年   5篇
  2016年   8篇
  2015年   9篇
  2014年   9篇
  2013年   11篇
  2012年   3篇
  2011年   21篇
  2010年   15篇
  2009年   15篇
  2008年   20篇
  2007年   11篇
  2006年   14篇
  2005年   7篇
  2004年   15篇
  2003年   10篇
  2002年   6篇
  2001年   7篇
  2000年   4篇
  1999年   3篇
  1998年   3篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   3篇
  1992年   1篇
  1989年   1篇
  1986年   1篇
排序方式: 共有211条查询结果,搜索用时 31 毫秒
101.
The present work aims at studying numerically the influence of void concentration, number of voids and absence/presence of inclusion on void collapse/growth and coalescence in materials submitted to shear loading. Starting from the experimental observation that voiding mostly forms within bands of localised deformation in the form of void sheets, the geometrical configuration retained to that purpose is a layer of periodic cells with 1–5, empty or particle-containing voids, subject to simple shearing.  相似文献   
102.
Plastic flow is an important mechanism for relaxing stresses that develop due to swelling/shrinkage during charging/discharging of battery materials. Amorphous high-storage-capacity Li–Si has lower flow stresses than crystalline materials but there is evidence that the plastic flow stress depends on the conditions of charging and discharging, indicating important non-equilibrium aspects to the flow behavior. Here, a mechanistically-based constitutive model for rate-dependent plastic flow in amorphous materials, such as LixSi alloys, during charging and discharging is developed based on two physical concepts: (i) excess energy is stored in the material during electrochemical charging and discharging due to the inability of the amorphous material to fully relax during the charging/discharging process and (ii) this excess energy reduces the barriers for plastic flow processes and thus reduces the applied stresses necessary to cause plastic flow. The plastic flow stress is thus a competition between the time scales of charging/discharging and the time scales of glassy relaxation. The two concepts, as well as other aspects of the model, are validated using molecular simulations on a model Li–Si system. The model is applied to examine the plastic flow behavior of typical specimen geometries due to combined charging/discharging and stress history, and the results generally rationalize experimental observations.  相似文献   
103.
Motivated by a model of the response of vertically aligned carbon nanotube (VACNT) pillars in uniaxial compression, we consider the deformation of a class of compressible elastic-viscoplastic solids with a hardening-softening-hardening variation of flow strength with plastic strain. In previous work (Hutchens et al. 2011) a constitutive relation was presented and used to model the response of VACNT pillars in axisymmetric compression. Subsequently, it was found that due to a programming error the constitutive relation presented in the paper (Hutchens et al. 2011) was not the one actually implemented. In particular, the plastic flow rule actually used did not satisfy plastic normality. Here, we present the constitutive formulation actually implemented in the previous work (Hutchens et al. 2011). Dynamic, finite deformation, finite element calculations are carried out for uniaxial compression, uniaxial tension and for indentation of a "half-space" by a conical indenter tip. A sequential buckling-like deformation mode is found in com- pression when there is plastic non-normality and hardening-softening-hardening. The same material characterization gives rise to a Lüders band-like deformation mode in ten- sion. When there is a deformation mode with a sharp front along mesh boundaries, the overall stress-strain response contains high frequency oscillations that are a mesh artifact. The responses of non-softening solids are also analyzed and their overall stress-strain behavior and deformationmodes are compared with those of hardening-softening- hardening solids. We find that indentation with a sharp in- denter tip gives a qualitatively equivalent response for hardening and hardening-softening-hardening solids.  相似文献   
104.
Estrogen withdrawal in postmenopausal women increases bone loss and bone fragility in the vertebra. Bone loss with osteoporosis not only reduces bone mineral den-sity (BMD), but actually alters bone quality, which can be comprehensively represented by bone post-yield behav-iors. This study aimed to provide some information as to how osteoporosis induced by estrogen depletion could influence the evolution of post-yield microdamage accu-mulation and plastic deformation in vertebral bodies. This study also tried to reveal the part of the mechanisms of how estrogen deficiency-induced osteoporosis would increase the bone fracture risk. A rat bilateral ovariectomy (OVX) model was used to induce osteoporosis. Progressive cyclic compression loading was developed for vertebra testing to elucidate the post-yield behaviors. BMD, bone volume fraction, stiffness degradation, and plastic deformation evo-lution were compared among rats raised for 5 weeks (ovx5w and sham5w groups) and 35 weeks (ovx35w and sham35w groups) after sham surgery and OVX. The results showedthat a higher bone loss in vertebral bodies corresponded to lower stiffness and higher plastic deformation. Thus, osteo-porosis could increase the vertebral fracture risk probably through microdamage accumulation and plastic deforming degradation.  相似文献   
105.
In this work we develop a finite-deformation-based, thermo-mechanically-coupled and non-local phenomenological theory for polycrystalline shape-memory alloys (SMAs) capable of undergoing austenite ↔ martensite phase transformations. The constitutive model is developed in the isotropic plasticity setting using standard balance laws, thermodynamic laws and the theory of micro-force balance (Fried and Gurtin, 1994). The constitutive model is then implemented in the ABAQUS/Explicit (2009) finite-element program by writing a user-material subroutine. Material parameters in the constitutive model were fitted to a set of superelastic experiments conducted by Thamburaja and Anand (2001) on a polycrystalline rod Ti–Ni. With the material parameters calibrated, we show that the experimental stress-biased strain–temperature-cycling and shape-memory effect responses are qualitatively well-reproduced by the constitutive model and the numerical simulations. We also show the capability of our constitutive mode in studying the response of SMAs undergoing coupled thermo-mechanical loading and also multi-axial loading conditions by studying the deformation behavior of a stent unit cell.  相似文献   
106.
A microstructural finite element (MFE) model is developed to capture the interaction between martensitic transformations and plasticity in NiTi shape memory alloys (SMAs). The interaction is modeled through the grain-to-grain redistribution of stress caused by both plasticity and phase transformation, so that each mechanism affects the driving force of the other. A unique feature is that both processes are modeled at a crystallographic level and are allowed to operate simultaneously. The model is calibrated to pseudoelastic data for select single crystals of Ti–50.9at.%Ni. For polycrystals, plasticity is predicted to enhance the overall martensite volume fraction at a given applied stress. Upon unloading, residual stress can induce remnant (retained) martensite. For thermal cycling under load bias, plasticity is observed to limit the net transformation strain/cycle and increase the hysteretic width. Deformation processing, via plastic pre-straining at elevated temperature, is shown to dramatically alter subsequent pseudoelastic response, as well as induce two-way shape memory behavior during no-load thermal cycling. Overall, the model is suitable at smaller imposed strains, where martensite detwinning is not expected to dominate.  相似文献   
107.
The extension of classical shakedown theorems for hardening plasticity is interesting from both theoretical and practical aspects of the theory of plasticity. This problem has been much discussed in the literature. In particular, the model of generalized standard materials gives a convenient framework to derive appropriate results for common models of plasticity with strain-hardening. This paper gives a comprehensive presentation of the subject, in particular, on general results which can be obtained in this framework. The extension of the static shakedown theorem to hardening plasticity is presented at first. It leads by min-max duality to the definition of dual static and kinematic safety coefficients in hardening plasticity. Dual static and kinematic approaches are discussed for common models of isotropic hardening of limited or unlimited kinematic hardening. The kinematic approach also suggests for these models the introduction of a relaxed kinematic coefficient following a method due to Koiter. Some models for soils such as the Cam-clay model are discussed in the same spirit for applications in geomechanics. In particular, new appropriate results concerning the variational expressions of the dual kinematic coefficients are obtained.  相似文献   
108.
This paper is concerned with the analysis of pressure transients in damageable elasto-plastic piping systems. The fluid dynamics and pipewall deformation are modelled by the classical water hammer theory, whereas pipewall mechanical behavior is described by an internal variable constitutive theory. The constitutive model coupling plasticity and damage used herein gives rise to a nonlinear hyperbolic problem in which the wavespeeds are altered by damage evolution. The problem is numerically approximated by means of a technique based on an additive decomposition together with the Glimm's method and a special Euler-type time integration scheme. Examples concerning the structural integrity analysis of a reservoir-pipe-valve installation, where hydraulic transients are generated by valve slam, are presented to illustrate the applicability of both theory and numerical method.  相似文献   
109.
One of the basic mechanisms for fatigue crack growth in ductile metals is that depending on crack-tip blunting under tensile loads and re-sharpening of the crack-tip during unloading. In a standard numerical analysis accounting for finite strains it is not possible to follow this process during many cycles, as severe mesh distortion at the crack-tip results from the huge geometry changes developing during the cyclic plastic straining. In the present numerical studies, based on an elastic-perfectly plastic material model, crack growth computations are continued up to 200 full cycles by using remeshing at several stages of the plastic deformation. Three different values of the load ratio R=Kmin/Kmax are considered. It is shown that the crack-tip opening displacement, CTOD, typically undergoes a transient behaviour, with no crack closure during many cycles, before a steady-state cycling with crack closure at the tip starts to gradually develop.  相似文献   
110.
The governing equations for classical rate-independent plasticity are formulated in the framework of meshless method. The special J2 flow theory for three-dimensional, two-dimensional plane strain and plane stress problems are presented. The numerical procedures, including return mapping algorithm, to obtain the solutions of boundary-value problems in computational plasticity are outlined. For meshless analysis the special treatment of the presence of barriers and mirror symmetries is formulated. The crack growth process in elastic–plastic solid under plane strain and plane stress conditions is analyzed. Numerical results are presented and discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号