首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1205篇
  免费   28篇
  国内免费   21篇
化学   116篇
晶体学   2篇
力学   428篇
数学   330篇
物理学   378篇
  2023年   5篇
  2022年   8篇
  2021年   6篇
  2020年   21篇
  2019年   14篇
  2018年   11篇
  2017年   30篇
  2016年   38篇
  2015年   23篇
  2014年   59篇
  2013年   81篇
  2012年   53篇
  2011年   49篇
  2010年   46篇
  2009年   55篇
  2008年   93篇
  2007年   89篇
  2006年   59篇
  2005年   66篇
  2004年   55篇
  2003年   50篇
  2002年   31篇
  2001年   32篇
  2000年   31篇
  1999年   27篇
  1998年   30篇
  1997年   34篇
  1996年   21篇
  1995年   21篇
  1994年   11篇
  1993年   4篇
  1992年   15篇
  1991年   7篇
  1990年   11篇
  1989年   10篇
  1988年   5篇
  1987年   3篇
  1986年   5篇
  1985年   7篇
  1984年   4篇
  1983年   6篇
  1982年   4篇
  1981年   4篇
  1980年   2篇
  1979年   4篇
  1977年   5篇
  1976年   3篇
  1974年   1篇
  1972年   1篇
  1969年   1篇
排序方式: 共有1254条查询结果,搜索用时 593 毫秒
31.
A method to study dynamical instability and non-linear parametric vibrations of symmetrically laminated plates of complex shapes and having different cutouts is proposed. The first-order shear deformation theory (FSDT) and the classical plate theory (CPT) are used to formulate a mathematical statement of the given problem. The presence of cutouts essentially complicates the solution of buckling problem, since the stress field is non-uniform. At first, a plane stress analysis is carried out using the variational Ritz method and the R-functions theory. The obtained results are applied to investigate buckling and parametric vibrations of laminated plates. The developed method uses the R-functions theory, and it may be directly employed to study laminated plates of arbitrary forms and different boundary conditions. Besides, the proposed method is numerical-analytical, what greatly facilitates a solution of similar-like non-linear problems. In order to show the advantage of the developed approach, instability zones and response curves for the layered cross- and angle-ply plates with external cutouts are constructed and discussed.  相似文献   
32.
《Comptes Rendus Physique》2016,17(5):512-517
We report on the existence of unidirectional phononic band gaps that may span over extended regions of the Brillouin zone and can find application in trapping elastic (acoustic) waves in properly designed multilayered 3D structures. Phononic isolators operate as a result of asymmetrical wave transmission through a slab of a crystallographic phononic structure with broken mirror symmetry. Due to the use of lossless materials in the crystal, the absorption rate is dramatically enhanced when the proposed isolator is placed next to a vibrational harvesting cell.  相似文献   
33.
In the present work, a three-dimensional (3D) elastic plate model capturing the small scale effects is developed for the free vibration of functionally graded (FG) nanoplates resting on elastic foundations. The theoretical model is formulated employing the nonlocal differential constitutive relations of Eringen in conjunction with the 3D equations of motion of elasticity.The material properties are assumed to vary continuously along the thickness of the nanoplate in accordance with the power law formulation. Through extending the generalized differential quadrature (GDQ) method to the three-dimensional case, the governing equations are simultaneously discretized in every three coordinate directions and are then recast to the standard form of an eigen value problem. Solving the acquired problem, the natural frequencies of the nanoplates with different boundary conditions are calculated. The convergence behavior of the numerical results is checked out and comparison studies are conducted to make sure of the accuracy and reliability of the present model. Finally, the dependence of the vibration behavior of the nanoplate on edge conditions, elastic coefficients of the foundation, scale coefficient, mode number, material and geometric parameters are discussed.  相似文献   
34.
The free vibration analysis of a carbon nanotube (CNT) embedded in a volume element is performed using 3D finite element (FE) and analytical models. Three approaches consist of molecular and continuum mechanics FE methods and continuum analytical method are employed to simulate the CNT, interphase region and surrounding matrix. The bonding between CNT and polymer is treated as non-perfect bonding using van der Waals and triple phase material interaction in first and second approaches. In analytical approach a perfect bonding is assumed between nanotube and matrix. First, natural frequencies of CNT under different boundary conditions and aspect ratios are obtained by three approaches and the results are compared with published data. The results show the frequency response variations of CNT in GHz to THz range. Subsequently, vibration behaviors of CNT/polymer are evaluated and the results revealed the importance of interphase region role in the performance of nanocomposites. The results also showed the convergence of the natural frequencies for 1–2.5% of CNT volume in high aspect ratios using three methods, so that the interphase effects is negligible. In addition, it is observed that the molecular method due to interphase role has proper performance in vibration behavior investigation of volume elements.  相似文献   
35.
The FT Raman spectra of the zero and first generations of phosphorus-containing dendrimers built from thiophosphoryl, cyclotriphosphazene and phthalocyanine core with terminal oxybenzaldehyde groups have been recorded and analyzed. The structural optimization and normal mode analysis were performed for dendrimers on the basis of the density functional theory (DFT). The calculated geometrical parameters, harmonic vibrational frequencies and Raman scattering activities are predicted in a good agreement with the experimental data. The experimental Raman spectra of dendrimers were interpreted by means of potential energy distribution. Relying on DFT calculations the lines of the cores, repeating units and terminal groups of dendrimers were assigned.The influence of the encirclement on the line frequencies and intensities was studied and due to the predictable, controlled and reproducible structure of dendrimers the information, usually inaccessible is obtained. The strong line at 1600 cm−1 show marked changes of intensity in dependence of aldehyde (CHO) or azomethyne (CHN) substituents in the aromatic ring. The polarizabilities and lipophilicity of dendrimers were estimated.  相似文献   
36.
The aim of this work is to evaluate the dynamic properties of nonwoven flax, hemp, kenaf and glass fibre-reinforced polypropylene (PP) composites. Also, the influence of some parameters, such as the type of reinforcement, the fibre/matrix weight ratio, the fibre orientation and the porosity content, on the damping behaviour of these nonwoven composites is investigated. To this end, a free flexural vibrations analysis was conducted to experimentally identify their natural frequencies and their associated loss factors. The obtained results show that the nonwoven composites reinforced by natural fibres present higher loss factors compared with those of the glass-PP composite. These interesting damping properties make these nonwoven composites very attractive for automotive applications where the dissipation of vibrations is highly requested.  相似文献   
37.
It is well known that symmetry plays a key role in chemical reactivity. Here we explore its role in vibrational strong coupling (VSC) for a charge‐transfer (CT) complexation reaction. By studying the trimethylated‐benzene–I2 CT complex, we find that VSC induces large changes in the equilibrium constant KDA of the CT complex, reflecting modifications in the ΔG° value of the reaction. Furthermore, by tuning the microfluidic cavity modes to the different IR vibrations of the trimethylated benzene, ΔG° either increases or decreases depending only on the symmetry of the normal mode that is coupled. This result reveals the critical role of symmetry in VSC and, in turn, provides an explanation for why the magnitude of chemical changes induced by VSC are much greater than the Rabi splitting, that is, the energy perturbation caused by VSC. These findings further confirm that VSC is powerful and versatile tool for the molecular sciences.  相似文献   
38.
Predicting the onset of non-spherical oscillations of bubbles in soft matter is a fundamental cavitation problem with implications to sonoprocessing, polymeric materials synthesis, and biomedical ultrasound applications. The shape stability of a bubble in a Kelvin-Voigt viscoelastic medium with nonlinear elasticity, the simplest constitutive model for soft solids, is analytically investigated and compared to experiments. Using perturbation methods, we develop a model reducing the equations of motion to two sets of evolution equations: a Rayleigh-Plesset-type equation for the mean (volume-equivalent) bubble radius and an equation for the non-spherical mode amplitudes. Parametric instability is predicted by examining the natural frequency and the Mathieu equation for the non-spherical modes, which are obtained from our model. Our theoretical results show good agreement with published experiments of the shape oscillations of a bubble in a gelatin gel. We further examine the impact of viscoelasticity on the time evolution of non-spherical mode amplitudes. In particular, we find that viscosity increases the damping rate, thus suppressing the shape instability, while shear modulus increases the natural frequency, which changes the unstable mode. We also explain the contributions of rotational and irrotational fields to the viscoelastic stresses in the surroundings and at the bubble surface, as these contributions affect the damping rate and the unstable mode. Our analysis on the role of viscoelasticity is potentially useful to measure viscoelastic properties of soft materials by experimentally observing the shape oscillations of a bubble.  相似文献   
39.
传统绝对节点坐标法(absolute nodal coordinate formulation,ANCF)在变截面梁类构件建模过程中常以几何中位线等效构造单元中性线,难以对变截面单元位移场状态进行精确描述.为解决此类问题,本文以中细型变截面梁类构件为研究对象,深入考虑变截面结构几何因素及复合材料属性对变截面梁类构件中性...  相似文献   
40.
A passive vibration absorber, termed the nonlinear tuned vibration absorber (NLTVA), is designed for the suppression of chatter vibrations. Unlike most passive vibration absorbers proposed in the literature for suppressing machine tool vibrations, the NLTVA comprises both a linear and a nonlinear restoring force. Its linear characteristics are tuned in order to optimize the stability properties of the machining operation, while its nonlinear properties are chosen in order to control the bifurcation behavior of the system and guarantee robustness of stable operation. In this study, the NLTVA is applied to turning machining.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号