全文获取类型
收费全文 | 188篇 |
免费 | 9篇 |
国内免费 | 45篇 |
专业分类
化学 | 174篇 |
力学 | 29篇 |
综合类 | 2篇 |
数学 | 1篇 |
物理学 | 36篇 |
出版年
2023年 | 1篇 |
2022年 | 1篇 |
2021年 | 2篇 |
2020年 | 4篇 |
2019年 | 4篇 |
2018年 | 3篇 |
2017年 | 9篇 |
2016年 | 8篇 |
2015年 | 6篇 |
2014年 | 3篇 |
2013年 | 21篇 |
2012年 | 9篇 |
2011年 | 10篇 |
2010年 | 12篇 |
2009年 | 16篇 |
2008年 | 12篇 |
2007年 | 14篇 |
2006年 | 7篇 |
2005年 | 21篇 |
2004年 | 13篇 |
2003年 | 4篇 |
2002年 | 12篇 |
2001年 | 7篇 |
2000年 | 4篇 |
1999年 | 7篇 |
1998年 | 6篇 |
1997年 | 4篇 |
1996年 | 5篇 |
1995年 | 1篇 |
1994年 | 1篇 |
1993年 | 4篇 |
1992年 | 1篇 |
1991年 | 3篇 |
1990年 | 5篇 |
1987年 | 1篇 |
1979年 | 1篇 |
排序方式: 共有242条查询结果,搜索用时 0 毫秒
61.
采用模压成型方法制备各向异性粘结NdFeB磁体,并研究了其经交流退磁及热退磁后磁体的表面剩磁大小对磁粉吸附程度的影响。考察了分别以环氧树脂(epoxy resin)和聚四氟乙烯(PTFE)为粘结剂时,其对各向异性粘结NdFeB的热退磁效果、尺寸精度、磁性能和力学性能的影响。通过试验发现,以聚四氟乙烯为粘结剂的磁体在取向成型后能够在高于NdFeB合金居里点(312℃)的温度(360-380℃)进行热退磁处理,达到良好的热退磁效果,使得磁体的表面剩磁降低到5 mT以下,以满足磁体表面防腐处理和尺寸精度的要求。 相似文献
62.
63.
A.C. Chipara T. Tsafack P.S. Owuor J. Yeon C.E. Junkermeier A.C.T. van Duin S. Bhowmick S.A.S. Asif S. Radhakrishnan J.H. Park G. Brunetto B.A. Kaipparettu D.S. Galvão M. Chipara J. Lou H.H. Tsang M. Dubey R. Vajtai P.M. Ajayan 《Materials Today Chemistry》2018
Instantaneous adhesion between different materials is a requirement for several applications ranging from electronics to biomedicine. Approaches such as surface patterning, chemical cross-linking, surface modification, and chemical synthesis have been adopted to generate temporary adhesion between various materials and surfaces. Because of the lack of curing times, temporary adhesives are instantaneous, a useful property for specific applications that need quick bonding. However, to this day, temporary adhesives have been mainly demonstrated under dry conditions and do not work well in submerged or humid environments. Furthermore, most rely on chemical bonds resulting from strong interactions with the substrate such as acrylate based. This work demonstrates the synthesis of a universal amphibious adhesive solely by combining solid polytetrafluoroethylene (PTFE) and liquid polydimethylsiloxane (PDMS) polymers. While the dipole-dipole interactions are induced by a large electronegativity difference between fluorine atoms in PTFE and hydrogen atoms in PDMS, strong surface wetting allows the proposed adhesive to fully coat both substrates and PTFE particles, thereby maximizing the interfacial chemistry. The two-phase solid–liquid polymer system displays adhesive characteristics applicable both in air and water, and enables joining of a wide range of similar and dissimilar materials (glasses, metals, ceramics, papers, and biomaterials). The adhesive exhibits excellent mechanical properties for the joints between various surfaces as observed in lap shear testing, T-peel testing, and tensile testing. The proposed biocompatible adhesive can also be reused multiple times in different dry and wet environments. Additionally, we have developed a new reactive force field parameterization and used it in our molecular dynamics simulations to validate the adhesive nature of the mixed polymer system with different surfaces. This simple amphibious adhesive could meet the need for a universal glue that performs well with a number of materials for a wide range of conditions. 相似文献
64.
Growth feature of PTFE coatings on rubber substrate by low‐energy electron beam dispersion 下载免费PDF全文
Polytetrafluoroethylene (PTFE) coatings were prepared on Si and acrylonitrile‐butadiene rubber substrates by low‐energy electron beam dispersion. The effects of substrate nature, distance of target to substrate (dts) and coatings thickness on the surface morphology, structure, and tribological properties of the coatings were investigated. The results showed that substrate nature affects the shape and size distribution of surface conglomerations of PTFE coatings due to the interaction process of active dispersion particles with underlying polymer layer. Surface energy of PTFE coatings decreases first with the coatings thickness increases to 1.25 µm and then slowly increases with the thickness. Structure defects (pore, interstice, and so on) in the coatings increase with the thickness increases but reduce significantly with the dts increases. PTFE coating prepared at the dts of 20 cm had a higher intensity of the amorphous absorption bands. Friction experiment indicated that the destroyed area of the coatings in the friction region decreases with increases the coatings thickness but increases with the dts. The rubber modified by PTFE coatings with spherical structure possesses a higher stability in the friction process and a lower coefficient of friction. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
65.
粗糙PTFE涂层表面结构对乙醇/水混合溶液润湿性的影响 总被引:1,自引:0,他引:1
以具有粗糙结构的超疏水的聚四氟乙烯(PTFE)涂层为基体, 研究具有不同表面张力的乙醇/水混合溶液在表面的润湿. 通过空气分率的计算并进行液滴受力分析. 结果表明, 随着表面张力的降低, 乙醇/水混合溶液逐渐填满涂层表面的粗糙结构, 当表面张力大于约28 mN·m-1时, 溶液首先填满表面上的条纹状结构; 当表面张力小于约28 mN·m-1时, 溶液填满表面上的乳突状结构. 当条纹状结构被填满时, 粗糙表面空气分率下降很小, 溶液不能润湿PTFE涂层表面;当乳突状结构被填满时, 粗糙表面空气分率迅速下降,溶液能够润湿PTFE涂层. 相似文献
66.
Polytetrafluoroethylene (PTFE) composites filled with 10–30% volume content of bronze powder were prepared through molding and sintering process. Transfer films of these composites were prepared on surface of 2024 Al bar through friction method under certain condition. Roughness, morphology, andelement of these transfer films were investigated using scanning electron microscope (SEM) and energy dispersive spectrometer (EDS) methods. Tribological propertiesof these transfer films sliding against GCr15 steel ball were tested using a DFPM reciprocating tribometer. Worn surfaces were observed and analyzed using SEM and EDS methods. It was found that uniformity and continuity of the transfer films were obviously improved by the increase of bronze content of the composites. Transfer films with better uniformity and continuity holds longer wear life. Considerably lower friction coefficient and longer wear life of these transfer films indicate that the transfer films prepared in the experiment could effectively prevent direct contact of metal friction pair and thus protect them from heavy wear. SEM and EDS analyses of the worn surfaces indicate that adhesion wear and fatigue wear were main wear modes of the transfer film. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
67.
G.H. YangC. Lim Y.P. TanYan Zhang E.T. Kang K.G. Neoh 《European Polymer Journal》2002,38(11):2153-2160
Surface modification of Ar plasma-pretreated poly(tetrafluoroethylene) (PTFE) and poly(vinylidene fluoride) (PVDF) films via UV-induced graft copolymerization with 4-vinylpyridine (4VP), 2-vinylpyridine (2VP) or 1-vinylimidazole (VIDz) was carried out. Electroless deposition of nickel could be carried out on these graft-modified fluoropolymer surfaces after PdCl2 activation. The surface compositions of the graft-modified films were studied by X-ray photoelectron spectroscopy. The adhesion strength between the surface graft-copolymerized fluoropolymer film and the electrolessly deposited nickel was affected by the type of monomers used for graft copolymerization and the graft concentration. The optimum T-peel adhesion strengths of the electrolessly deposited Ni on the 4VP graft-copolymerized PTFE and PVDF surfaces were about 7 and 13 N/cm, respectively. The metal/fluoropolymer assemblies delaminated by cohesive failure inside the fluoropolymer substrates. The enhanced adhesion between the electrolessly deposited Ni and the surface-modified fluoropolymers is attributable to the interfacial charge transfer interactions between the grafted polymer chains and the deposited metals (Pd and Ni), the spatial distribution of the graft chains into the metal matrix and the covalent tethering of the graft chains on the fluoropolymer surface. 相似文献
68.
69.
聚四氟乙烯和二硫化钼填充聚酰亚胺复合材料的摩擦磨损性能研究 总被引:8,自引:3,他引:8
采用MM-200型摩擦磨损试验机考察了聚四氟乙烯(PTFE)和MoS2填充聚酰亚胺(PI)复合材料在干摩擦下与GCr15轴承钢对摩时的摩擦磨损性能,并利用扫描电子显微镜和X射线能量色散谱仪分析了PI复合材料及其偶件磨损表面形貌和元素面分布.结果表明,PTFE和MoS2均可降低PI的摩擦系数,其中PI 30%MoS2复合材料的减摩性能最佳,其摩擦系数同纯PI的相比降低了约50%.除PI 10%PTFE 20%MoS2外,其它几种复合材料的抗磨性能均明显优于纯PI,其中PI 20%PTFE 10%MoS2复合材料的抗磨性能最佳,其磨损率比纯PI的低1个数量级.PI复合材料的摩擦磨损性能同其在偶件磨损表面形成的转移膜的性质密切相关,当转移膜厚度适当且分布较均匀时,PI复合材料的减摩抗磨性能良好. 相似文献
70.
M. L. White A. J. Waddon E. D. T. Atkins R. J. Farris 《Journal of Polymer Science.Polymer Physics》1998,36(15):2811-2819
A series of new copolymers of tetrafluoroethylene (TFE) and hexafluoropropylene (HFP) containing up to 50 mol % of the hexafluoropropylene comonomer have been investigated with respect to chain conformation and crystal structure using wide-angle X-ray diffraction (WAXD). Increasing HFP content leads to significant departures from the highly ordered crystalline structure of the homopolymer PTFE; the helical conformation of the chain relaxes and untwists to accommodate the larger CF3 pendant group in the HFP unit. Simultaneously the lateral hexagonal packing of the helices becomes less ordered and the a-dimension of the hexagonal cell increases. The above effects are progressive with increasing HFP content. At 50 mol % HFP incorporation the structure is a disordered crystalline phase. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 2811–2819, 1998 相似文献