全文获取类型
收费全文 | 319篇 |
免费 | 23篇 |
国内免费 | 16篇 |
专业分类
化学 | 217篇 |
力学 | 43篇 |
数学 | 6篇 |
物理学 | 92篇 |
出版年
2023年 | 1篇 |
2022年 | 4篇 |
2021年 | 5篇 |
2020年 | 19篇 |
2019年 | 7篇 |
2018年 | 14篇 |
2017年 | 13篇 |
2016年 | 14篇 |
2015年 | 12篇 |
2014年 | 10篇 |
2013年 | 25篇 |
2012年 | 10篇 |
2011年 | 10篇 |
2010年 | 13篇 |
2009年 | 25篇 |
2008年 | 32篇 |
2007年 | 22篇 |
2006年 | 16篇 |
2005年 | 19篇 |
2004年 | 8篇 |
2003年 | 21篇 |
2002年 | 14篇 |
2001年 | 11篇 |
2000年 | 6篇 |
1999年 | 8篇 |
1998年 | 11篇 |
1996年 | 4篇 |
1994年 | 2篇 |
1992年 | 1篇 |
1979年 | 1篇 |
排序方式: 共有358条查询结果,搜索用时 15 毫秒
21.
Sandeep Ippalapalli A. Dileep Ranaprathapan Dr. Sachchida N. Singh Dr. G. Harikrishnan 《Chemphyschem》2013,14(6):1190-1196
Two‐way multicomponent diffusion processes in polymeric nanocomposite foams, where the condensed phase is nanoscopically reinforced with impermeable fillers, are investigated. The diffusion process involves simultaneous outward permeation of the components of the dispersed gas phase and inward diffusion of atmospheric air. The transient variation in thermal conductivity of foam is used as the macroscopic property to track the compositional variations of the dispersed gases due to the diffusion process. In the continuum approach adopted, the unsteady‐state diffusion process is combined with tortuosity theory. The simulations conducted at ambient temperature reveal distinct regimes of diffusion processes in the nanocomposite foams owing to the reduction in the gas‐transport rate induced by nanofillers. Simulations at a higher temperature are also conducted and the predictions are compared with experimentally determined thermal conductivities under accelerated diffusion conditions for polyurethane foams reinforced with clay nanoplatelets of varying individual lamellar dimensions. Intermittent measurements of foam thermal conductivity are performed while the accelerated diffusion proceeded. The predictions under accelerated diffusion conditions show good agreement with experimentally measured thermal conductivities for nanocomposite foams reinforced with low and medium aspect‐ratios fillers. The model shows higher deviations for foams with fillers that have a high aspect ratio. 相似文献
22.
Study on microstructure and mechanical properties relationship of short fibers/rubber foam composites 总被引:1,自引:0,他引:1
Research on short fibers/rubber foam composites is rarely found in the literature. In this paper, microcellular rubber foams unfilled (MF), strengthened by pretreated short fibers (MFPS) and untreated short fibers (MFUS) are prepared, respectively. The microstructure and mechanical properties of the three composites have been studied via scanning electron microscope (SEM) and mechanical testing, respectively. The SEM results show that both pretreated and untreated short fibers disperse uniformly in the composites and in bidimensional orientation. Moreover, the pretreated short fibers have much better adhesion with the rubber matrix than untreated ones. The experimental results also indicate that the introduction of short fibers is mainly responsible for the great enhancement of most mechanical properties of the microcellular rubber foams, and the good interfacial adhesion of the short fibers with the matrix contributes to the more extensive improvement in the mechanical properties. It is also found that the reinforcement effect of short fibers to compressive modulus strongly depends on the density of microcellular rubber foams, the orientation of short fiber and the deformation ratio. The compressive modulus of microcellular rubber foams at the normalized density less than 0.70 and beyond 0.70 is predicted by the modified Simple Blending Model and the Halpin-Kerner Model, respectively. The theoretically predicted values are in good accordance with the experimental results. 相似文献
23.
Ceramic Foams from a Preceramic Polymer and Polyurethanes: Preparation and Morphological Investigations 总被引:1,自引:0,他引:1
Colombo Paolo Griffoni Martina Modesti Michele 《Journal of Sol-Gel Science and Technology》1998,13(1-3):195-199
Open-cell ceramic foams were obtained from a preceramic polymer (silicone resin) and blown polyurethanes. The preceramic polymer, which is crosslinked by condensation of silanol groups, was dissolved in CH2Cl2 and added to a liquid polyol containing the surfactant and the amine catalyst. Isocyanate was then added to the mixture and the foam was obtained through a twofold blowing mechanism (physical and chemical blowing). The morphology of the expanded polyurethane, which can be flexible or semirigid, characterized the final structure of the ceramic foam. The materials obtained were pyrolyzed in a nitrogen flux at temperatures of 1000–1200°C, thus allowing for the polymer-to-ceramic transformation to occur in the preceramic polymer. The ceramic foams produced in this way consisted of an amorphous silicon oxycarbide ceramic (SiOC). They presented a density ranging from 0.1 to 0.3 g/cm3. The average pore diameter ranged from 200 to 400 m and they possessed 80 to 90% open porosity. 相似文献
24.
The solubility of gases in various polymers plays an important role for the design of new polymeric materials. Quantitative structure–property relationship (QSPR) models were designed to predict the solubility of gases such as CO2 and N2 in polyethylene (PE), polypropylene (PP), polystyrene (PS), polyvinyl acetate (PVA) and poly (butylene succinate) (PBS) at different temperatures and pressures by using quasi-SMILES codes. The dataset of 315 systems was split randomly into training, calibration and validation sets; random split 1 led to 214 training (r2 = 0.870 and RMSE = 0.019), 51 calibration (r2 = 0.858 and RMSE = 0.020) and 50 validation (r2 = 0.869 and RMSE = 0.017) sets. The suggested approach based on the quasi-SMILES, which are analogues of the traditional SMILES gives reasonable good predictions for solubility of CO2 and N2 in different polymers. The described methodology is universal for situations where the aim is to predict the response of an eclectic system upon a variety of physicochemical and/or biochemical conditions. 相似文献
25.
Sayyeda M. Hasan Landon D. Nash Duncan J. Maitland 《Journal of polymer science. Part A, Polymer chemistry》2016,54(14):1300-1318
Porous shape memory polymers (SMPs) exhibit geometric and volumetric shape change when actuated by an external stimulus and can be fabricated as foams, scaffolds, meshes, and other polymeric substrates that possess porous three-dimensional macrostructures. These materials have applications in multiple industries such as textiles, biomedical devices, tissue engineering, and aerospace. This review article examines recent developments in porous SMPs, with a focus on fabrication methods, methods of characterization, modes of actuation, and applications. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1300–1318 相似文献
26.
采用生物质原料腰果酚和9,10-二氢-9-氧杂-10-膦杂菲-10-氧化物(DOPO)为原料, 合成了一种磷杂菲改性腰果酚多元醇(P-Cardanol-Polyol), 并利用核磁共振氢谱和磷谱对其结构进行了表征. 利用P-Cardanol-Polyol对聚氨酯硬泡(RPUF)进行阻燃改性, 得到一系列阻燃聚氨酯硬泡. 考察了P-Cardanol-Polyol的用量对阻燃聚氨酯硬泡的形貌、 密度、 热导率、 压缩性能、 热稳定性以及阻燃性能的影响. 研究结果表明, P-Cardanol-Polyol对聚氨酯硬泡的密度影响可以忽略不计; 随着P-Cardanol-Polyol的加入, 阻燃聚氨酯硬泡的平均孔径逐渐减小, 热导率也逐渐降低. 未改性聚氨酯硬泡的最大热释放速率和总放热量分别为390 kW/m2和31.9 MJ/m2, 阻燃聚氨酯硬泡则降低至340 kW/m2和24.6 MJ/m2. 此外, 阻燃聚氨酯硬泡的压缩强度比未改性聚氨酯硬泡提升了约13%. 炭层分析结果表明, P-Cardanol-Polyol能够促进聚氨酯硬泡形成连续致密且具有良好抗热氧化性能的炭层, 有利于减少燃烧过程中可燃性气体的逸出, 从而提升阻燃性能. 相似文献
27.
28.
采用聚氨酯泡沫为模板,依次修饰羧甲基纤维素钠(CMC)、Fe~(3+),在惰性气氛中高温热处理反应,制备多孔结构的磁性吸油材料.用光学显微镜、扫描电子显微镜、红外吸收光谱、X-射线衍射、接触角等技术对材料进行表征.详细考察了加热反应温度、CMC浓度和Fe~(3+)浓度对材料吸油性能和磁性的影响规律.实验表明,当加热反应温度选择230°C,CMC浓度为0.3 wt%,FeCl_3浓度为0.1 mol/L时,材料吸油性能最佳,对正己烷、二甲苯、环己烷、甲苯、乙酸乙酯、氯仿、机油、原油等有机溶剂和油类分子的吸附容量为10倍左右.磁性多孔材料具有明显的亲油、疏水特性,水的接触角达115.9°,同时材料密度只有0.036g/cm~3,能够漂浮于水面,实现对水面有机溶剂的快速吸附.吸附后的材料在外界磁场控制下,能够通过磁分离方式从水面快速分离.该材料具有良好的循环利用性能,可重复使用20次以上,吸油性能仍然保持良好. 相似文献
29.
The main objective of this study was to evaluate the sound absorption properties of rigid polyurethane foams (PUFs) produced from crude glycerol (CG) and/or liquefied coffee grounds derived polyol (POL). The lignin content of POL proved to have a major influence on the structure and mechanical properties of the foams. Indeed, the POL content increased the cell size of the foams and their stiffness, which subsequently influenced the sound absorption coefficients. The POL derived foam has slightly higher sound absorption coefficient values at lower frequencies, while the CG foam has higher sound absorption coefficient values at higher frequencies. In turn, the foam prepared using a 50/50 mixture of polyols presents slightly higher sound absorption coefficient values in the medium frequencies range due to a balance between the cell structure and the mechanical properties. The results obtained seem to suggest that the mechanisms involved in sound wave absorption depend on the formulation used to prepare the foams. Additionally higher POL contents improved the thermal stability of PUFs as well as their mechanical properties. From this work the suitability of CG and/or POL derived PUFs as sound absorbing materials has been proven. 相似文献
30.
Rigid polyurethane foams with up to 50 wt% of microcapsules from LDPE-EVA containing Rubitherm®RT27 were synthesized. The influence of microcapsules on the foams density, microstructure and mechanical resistance was studied. Cell size and strut and wall thicknesses were analyzed by SEM. The relationships between densities and foam microstructures with their Young's moduli and collapse stress were found by the Gibson and Ashby formulations and the Kerner equation for mechanical properties of composites. It was found a cell structure change from polyhedral closed-cells to spherical or amorphous open-cells. A good agreement between the experimental and theoretical data was observed but requiring a cell form factor. Thus, Fitting parameters confirmed the high trend of these microcapsules to be incorporated into the foam cell walls and the form factors depicted the abrupt change of cell morphology. Thus, these equations are suitable for predicting the mechanical properties of foams containing fillers of low mechanical resistance. 相似文献