全文获取类型
收费全文 | 1090篇 |
免费 | 57篇 |
国内免费 | 55篇 |
专业分类
化学 | 52篇 |
力学 | 260篇 |
综合类 | 4篇 |
数学 | 741篇 |
物理学 | 145篇 |
出版年
2024年 | 2篇 |
2023年 | 13篇 |
2022年 | 5篇 |
2021年 | 10篇 |
2020年 | 16篇 |
2019年 | 27篇 |
2018年 | 20篇 |
2017年 | 25篇 |
2016年 | 22篇 |
2015年 | 29篇 |
2014年 | 45篇 |
2013年 | 99篇 |
2012年 | 26篇 |
2011年 | 73篇 |
2010年 | 66篇 |
2009年 | 67篇 |
2008年 | 77篇 |
2007年 | 57篇 |
2006年 | 62篇 |
2005年 | 60篇 |
2004年 | 47篇 |
2003年 | 58篇 |
2002年 | 46篇 |
2001年 | 35篇 |
2000年 | 31篇 |
1999年 | 33篇 |
1998年 | 34篇 |
1997年 | 27篇 |
1996年 | 22篇 |
1995年 | 12篇 |
1994年 | 9篇 |
1993年 | 5篇 |
1992年 | 6篇 |
1991年 | 5篇 |
1990年 | 4篇 |
1989年 | 2篇 |
1988年 | 6篇 |
1985年 | 7篇 |
1984年 | 2篇 |
1982年 | 1篇 |
1981年 | 1篇 |
1980年 | 4篇 |
1979年 | 2篇 |
1978年 | 1篇 |
1977年 | 1篇 |
排序方式: 共有1202条查询结果,搜索用时 15 毫秒
91.
Phoevos Koukouvinis Manolis Gavaises Anastasios Georgoulas Marco Marengo 《International Journal of Computational Fluid Dynamics》2016,30(2):129-140
This paper discusses the implementation of an explicit density-based solver, that utilises the central-upwind schemes for the simulation of cavitating bubble dynamic flows. It is highlighted that, in conjunction with the Monotonic Upstream-Centered Scheme for Conservation Laws (MUSCL) scheme they are of second order in spatial accuracy; essentially they are high-order extensions of the Lax–Friedrichs method and are linked to the Harten Lax and van Leer (HLL) solver family. Basic comparison with the predicted wave pattern of the central-upwind schemes is performed with the exact solution of the Riemann problem, for an equation of state used in cavitating flows, showing excellent agreement. Next, the solver is used to predict a fundamental bubble dynamics case, the Rayleigh collapse, in which results are in accordance to theory. Then several different bubble configurations were tested. The methodology is able to handle the large pressure and density ratios appearing in cavitating flows, giving similar predictions in the evolution of the bubble shape, as the reference. 相似文献
92.
This paper presents a new high‐order approach to the numerical solution of the incompressible Stokes and Navier–Stokes equations. The class of schemes developed is based upon a velocity–pressure–pressure gradient formulation, which allows: (i) high‐order finite difference stencils to be applied on non‐staggered grids; (ii) high‐order pressure gradient approximations to be made using standard Padé schemes, and (iii) a variety of boundary conditions to be incorporated in a natural manner. Results are presented in detail for a selection of two‐dimensional steady‐state test problems, using the fourth‐order scheme to demonstrate the accuracy and the robustness of the proposed methods. Furthermore, extensions to higher orders and time‐dependent problems are illustrated, whereas the extension to three‐dimensional problems is also discussed. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
93.
Valerio Caleffi 《国际流体数值方法杂志》2011,67(9):1135-1159
Hermite weighted essentially non‐oscillatory (HWENO) methods were introduced in the literature, in the context of Euler equations for gas dynamics, to obtain high‐order accuracy schemes characterized by high compactness (e.g. Qiu and Shu, J. Comput. Phys. 2003; 193 :115). For example, classical fifth‐order weighted essentially non‐oscillatory (WENO) reconstructions are based on a five‐cell stencil whereas the corresponding HWENO reconstructions are based on a narrower three‐cell stencil. The compactness of the schemes allows easier treatment of the boundary conditions and of the internal interfaces. To obtain this compactness in HWENO schemes both the conservative variables and their first derivatives are evolved in time, whereas in the original WENO schemes only the conservative variables are evolved. In this work, an HWENO method is applied for the first time to the shallow water equations (SWEs), including the source term due to the bottom slope, to obtain a fourth‐order accurate well‐balanced compact scheme. Time integration is performed by a strong stability preserving the Runge–Kutta method, which is a five‐step and fourth‐order accurate method. Besides the classical SWE, the non‐homogeneous equations describing the time and space evolution of the conservative variable derivatives are considered here. An original, well‐balanced treatment of the source term involved in such equations is developed and tested. Several standard one‐dimensional test cases are used to verify the high‐order accuracy, the C‐property and the good resolution properties of the model. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
94.
不可压N-S方程高效算法及二维槽道湍流分析 总被引:5,自引:1,他引:5
构造了基于非等距网格的迎风紧致格式,并将其与三阶精度的Adams半隐方法相结合,构造了求解不可压N-S方程高效算法。该算法利用基于交错网格的离散形式的压力Poisson方程求解压力项,解决了边界处的残余散度问题;同时还利用快速Fourier变换将方程的隐式部分解耦,离散后的代数方程组利用追赶法求解,大大减少了计算量。通过对二维槽道流动的数值模拟,证实了所构造的数值方法具有精度高,稳定性好,能抑制混淆误差等优点,同时具有很高的计算效率,是进行壁湍流直接数值模拟的有效方法。在数值模拟的基础上对二维槽道流动进行了分析,得到了Reynolds数从6000到15000的二维流动饱和态解(所谓“二维槽道湍流”);定性及定量结果均与他人的数值计算结果吻合十分理想。对流场进行了分析,指出了“二维湍流”与三维湍流统计特性的区别。 相似文献
95.
Implicit weighted essentially non‐oscillatory schemes for the incompressible Navier–Stokes equations
A class of lower–upper/approximate factorization (LUAF) implicit weighted essentially non‐oscillatory (ENO; WENO) schemes for solving the two‐dimensional incompressible Navier–Stokes equations in a generalized co‐ordinate system is presented. The algorithm is based on the artificial compressibility formulation, and symmetric Gauss–Seidel relaxation is used for computing steady state solutions while symmetric successive overrelaxation is used for treating time‐dependent flows. WENO spatial operators are employed for inviscid fluxes and central differencing for viscous fluxes. Internal and external viscous flow test problems are presented to verify the numerical schemes. The use of a WENO spatial operator not only enhances the accuracy of solutions but also improves the convergence rate for the steady state computation as compared with using the ENO counterpart. It is found that the present solutions compare well with exact solutions, experimental data and other numerical results. Copyright © 1999 John Wiley & Sons, Ltd. 相似文献
96.
Upwind schemes are evaluated with respect to their spectral accuracy in solving advection–diffusion equations. Their connection to large eddy simulations (LES) and direct numerical simulations is explored. Some broad guidelines are set forth to select an appropriate scheme for simulating a Navier–Stokes equation with or without a subgrid‐scale model. Copyright © 1999 John Wiley & Sons, Ltd. 相似文献
97.
Characteristic formulations for boundary conditions have demonstrated their effectiveness to handle inlets and outlets, especially to avoid acoustic wave reflections. At walls, however, most authors use simple Dirichlet or Neumann boundary conditions, where the normal velocity (or pressure gradient) is set to zero. This paper demonstrates that there are significant differences between characteristic and Dirichlet methods at a wall and that simulations are more stable when using walls modelled with a characteristic wave decomposition. The derivation of characteristic methods yields an additional boundary term in the continuity equation, which explains their increased stability. This term also allows to handle the two acoustic waves going towards and away from the wall in a consistent manner. Those observations are confirmed by stability matrix analysis and one‐ and two‐dimensional simulations of acoustic modes in cavities. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
98.
Almost all evaluations of convection schemes reported in the literature are conducted using simple problems on uniform orthogonal grids; thus, having limited contribution when solving industrial computational fluid dynamics (CFD), where the grids are usually non‐orthogonal with distortions. Herein, several convection schemes are assessed in uniform and distorted non‐orthogonal grids with emphasis on industrial applications. Linear and nonlinear (TVD) convection schemes are assessed on analytical benchmarks in both uniform and distorted grids. To evaluate the performance of the schemes, four error metrics are used: dissipation, phase and L1 errors, and the schemes' effective order of accuracy. Qualitative and quantitative deterioration of these error metrics as a function of the grid distortion metrics are investigated, and rigorous verifications are performed. Recommendations for effective use of the convection schemes based on the range of grid aspect ratio (AR), expansion ratio (ER) and skewness (Q) are included. A ship hydrodynamics case is studied, involving a Reynolds averaged Navier–Stokes simulation of a bare‐hull KVLCC2 tanker using linear and nonlinear convection schemes coupled with isotropic and anisotropic Reynolds‐stress (ARS) turbulence models using CFDShip‐Iowa v4. Predictions of local velocities and turbulent quantities from the midships to the nominal wake plane are compared with experimental fluid dynamics (EFD), and rigorous verification and validation analyses for integral forces and moments are performed for 0° and 12° drift angles. Best predictions are observed when coupling a second‐order TVD scheme with the anisotropic turbulence model. Further improvements are observed in terms of prediction of the vortical structures for 30° drift when using TVD2S‐ARS coupled with DES. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
99.
《International Journal of Solids and Structures》2014,51(11-12):2238-2243
The consecutive scheme of reconstructing the functions characterizing the instantaneous and long-termed modules, for inhomogeneous orthotropic viscoelastic layer whose properties continuously vary through a thickness is proposed. The identification problem is solved on the basis of the additional information on the integral characteristics of displacement fields measured on top border of a layer.Iterative process of reconstruction of six unknown functions is formulated. To reconstruct the rest six functions, systems of Fredholm’s integral equations of the first kind with smooth kernels are received.Computational experiment on a reconstruction of various laws of inhomogeneity is conducted; a comparative analysis of the results obtained is carried out. 相似文献
100.
《Comptes Rendus Mecanique》2014,342(10-11):583-594
In this paper we focus on WENO-based methods for the simulation of the 1D Quasi-Relativistic Vlasov–Maxwell (QRVM) model used to describe how a laser wave interacts with and heats a plasma by penetrating into it. We propose several non-oscillatory methods based on either Runge–Kutta (explicit) or Time-Splitting (implicit) time discretizations. We then show preliminary numerical experiments. 相似文献