首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1412篇
  免费   78篇
  国内免费   65篇
化学   523篇
晶体学   2篇
力学   369篇
综合类   2篇
数学   237篇
物理学   422篇
  2023年   13篇
  2022年   25篇
  2021年   27篇
  2020年   26篇
  2019年   21篇
  2018年   21篇
  2017年   24篇
  2016年   37篇
  2015年   29篇
  2014年   35篇
  2013年   97篇
  2012年   93篇
  2011年   61篇
  2010年   50篇
  2009年   93篇
  2008年   97篇
  2007年   89篇
  2006年   79篇
  2005年   77篇
  2004年   74篇
  2003年   51篇
  2002年   44篇
  2001年   57篇
  2000年   48篇
  1999年   29篇
  1998年   29篇
  1997年   33篇
  1996年   24篇
  1995年   20篇
  1994年   13篇
  1993年   12篇
  1992年   15篇
  1991年   17篇
  1990年   14篇
  1989年   11篇
  1988年   7篇
  1987年   11篇
  1986年   7篇
  1985年   4篇
  1984年   5篇
  1982年   6篇
  1981年   5篇
  1979年   2篇
  1978年   8篇
  1977年   2篇
  1973年   2篇
  1972年   2篇
  1971年   2篇
  1969年   1篇
  1936年   1篇
排序方式: 共有1555条查询结果,搜索用时 15 毫秒
51.
Six oil soluble nonionic surfactants with different HLBs have been prepared. Their HLBs situate between 3.9 and 6.7. Transesterification was carried out for glycerol and triethanol amine with oleic acid at different moles to obtain six emusilifiers. They named glycerol momooleate (I), glycerol diooleate (II), glycerol trioleate (III), triethanol amine mono-, di- and tri-oleate (IV), (V,) and (VI). The chemical structure was confirmed using; the elemental analysis, FTIR and 1HNMR. They were evaluated as a primary emulsifiers (PE) for thdrilling fluids (oil base mud) comparing with a currently used primary emulsifier (Fc). The water in oil base mud (w/o emulsions) was prepared. The concentration of emulsifiers and their HLB exhibited interesting rheology properties including shear-thinning behavior, yield value, viscoelastic effects, thixtropy, gel strength, and filtration loss. The rheology properties of such emulsions strongly depended on the average size distribution of the dispersed droplets that could be varied both with the bulk concentration and HLB value of the emulsifiers. The interfacial and surface properties of these emulsifiers suggest that the droplet size of the dispersed phase and bulk concentration are strongly related to the HLB value of emulsifiers. The w/o emulsion (mud formulation) stability is sensitive to the droplet size of the dispersed phase and HLB value of the used emulsifier. The results were discussed on the light the chemical structure of the primary emulsifiers and the emulsion ingredients.  相似文献   
52.
This paper develops the theory of Dirac reduction by symmetry for nonholonomic systems on Lie groups with broken symmetry. The reduction is carried out for the Dirac structures, as well as for the associated Lagrange–Dirac and Hamilton–Dirac dynamical systems. This reduction procedure is accompanied by reduction of the associated variational structures on both Lagrangian and Hamiltonian sides. The reduced dynamical systems obtained are called the implicit Euler–Poincaré–Suslov equations with advected parameters and the implicit Lie–Poisson–Suslov equations with advected parameters. The theory is illustrated with the help of finite and infinite dimensional examples. It is shown that equations of motion for second order Rivlin–Ericksen fluids can be formulated as an infinite dimensional nonholonomic system in the framework of the present paper.  相似文献   
53.
Two dimensional incompressible steady viscous nano-fluid flow with the impacts of heat generation and porous medium is examined numerically. For this objective Ti6Al4v are taken as nano-particles dispersed in different base fluids such as methanol, engine oil and water. Basically in this study we will compare three different nano-fluids to assess their flow behaviour and thermal performance. The flow model is developed under certain assumptions. The two dimensional non-linear PDEs are converted into non-linear ODEs with suitable transformation. The numerical procedure is adopted to find the results by using Bvp4c technique in MATLAB. Moreover, graphs are generated for various parameters against the temperature and velocity profiles. The fluid behaviour for different parameter is examined on velocity and temperature profile. It is depicted that for high values of volume fraction and curvature parameter nano-particles leads to high velocity and temperature profile. Moreover, velocity profile decreases for permeability parameter, while temperature profile enhances for heat generation parameter. The influence of Nusselt number and skin friction also assessed. The model of entropy generation is also presented.  相似文献   
54.
The Prandtl number is evaluated for the three-dimensional hard-sphere and one-component plasma fluids, from the dilute weakly coupled regime up to a dense strongly coupled regime near the fluid-solid phase transition. In both cases, numerical values of order unity are obtained. The Prandtl number increases on approaching the freezing point, where it reaches a quasi-universal value for simple dielectric fluids of about ≃1.7. Relations to two-dimensional fluids are briefly discussed.  相似文献   
55.
《中国化学快报》2021,32(9):2629-2636
The analysis of endogenous glycoproteins and glycopeptides in human body fluids is of great importance for screening and discovering disease biomarkers with clinical significance. However, the presence of interfering substances makes the direct quantitative detection of low-abundance glycoproteins and glycopeptides in human body fluids one of the great challenges in analytical chemistry. Magnetic solid phase extraction (MSPE) has the advantages of easy preparation, low cost and good magnetic responsiveness. Magnetic adsorbents are the core of MSPE technology, and magnetic adsorbents based on different functional materials are widely used in the quantitative analysis of glycoproteins and glycopeptides in human body fluids, making it possible to analyze glycoproteins and glycopeptides with low abundance as well as multiple types, which provides a technical platform for screening and evaluating glycoproteins and glycopeptides in body fluids as disease biomarkers. In this paper, we focus on the recent advances in the application of MSPE technology and magnetic adsorbents for the separation and enrichment of glycoproteins and glycopeptides in human body fluids, and the future trends and application prospects in this field are also presented.  相似文献   
56.
When a ferrofluid drop is trapped in a horizontal Hele-Shaw cell and subjected to a vertical magnetic field, a fingering instability results in the droplet evolving into a complex branched structure. This fingering instability depends on the magnetic field ramp rate but also depends critically on the initial state of the droplet. Small perturbations in the initial droplet can have a large influence on the resulting final pattern. By simultaneously applying a stabilizing (horizontal) azimuthal magnetic field, we gain more control over the mode selection mechanism. We perform a linear stability analysis that shows that any single mode can be selected by appropriately adjusting the strengths of the applied fields. This offers a unique and accurate mode selection mechanism for this confined magnetic fluid system. We present the results of numerical simulations that demonstrate that this mode selection mechanism is quite robust and “overpowers” any initial perturbations on the droplet. This provides a predictable way to obtain patterns with any desired number of fingers.  相似文献   
57.
The linear electrohydrodynamic cylindrical instability of annular Walters BB viscoelastic dielectric fluid layer surrounded by a conducting gas in the presence of radial electric field is investigated. The obtained dispersion relation is found to be complicated and cannot be treated theoretically easily. Two limiting cases of interest are investigated, when the inertia is dominant, and when both the kinematic viscosity and viscoelasticity are high, and the corresponding new stability conditions are obtained for both cases. We solve the eigenvalue problem numerically using the continuation method which gives better results than the classical non-linear solvers such as Newton and Secant methods. It is found that the applied radial electric field has a dual role on the stability of the considered system, depending of the chosen wavenumbers range. Both the kinematic viscoelasticity and liquid depth are found to have stabilizing effects, while both the kinematic viscosity and surface tension have destabilizing effects on the considered system. The stability or instability breaks down for critical wavenumber values at which the growth rate vanishes. The behaviors of both the maximum growth rate and the corresponding dominant wavenumber are discussed in detail corresponding to the effect of all physical parameters. Finally a comparison between the results obtained here for Walters BB viscoelastic fluids, and those obtained here too if the fluid is replaced by a Rivlin–Ericksen viscoelastic one is achieved. The limiting cases of absence of electric field and/or kinematic viscoelasticity are also investigated in detail.  相似文献   
58.
Triterpenoids are among the bioactive components of Chaga, the sterile conk of the medicinal fungus Inonotus obliquus. Supercritical fluid extraction of Chaga triterpenoids was carried out with supercritical CO2, while a modified Folch method was used as a comparison. Three temperature-pressure combinations were tested varying between 314–324 K (40–50 °C) and 281–350 bars, using time- and volume-limited extractions. Six triterpenoids were identified with GC-MS and quantified with GC-FID: ergosterol, lanosterol, β-sitosterol, stigmastanol, betulin, and inotodiol. The Folch extraction resulted in recovery of trametenolic acid, which was not extracted by supercritical CO2. Inotodiol was the major triterpenoid of all the extracts, with a yield of 87–101 mg/100 g and 139 mg/100 g, for SFEs and the Folch method, respectively. The contents of other major triterpenoids, lanosterol and ergosterol, varied in the ranges 59–63 mg/100 g and 17–18 mg/100 g by SFE, respectively. With the Folch method, the yields were 81 mg/100 g and 40 mg/100 g, respectively. The highest recovery of triterpenoids with SFE in relation to Folch was 56% and it was obtained at 324 K (50 °C) and 350 bar, regardless of extraction time or volume of CO2. The recoveries of lanosterol and stigmastanol were unaffected by SFE conditions. Despite the lower yield, SFE showed several advantages including shorter extraction time and less impact on the environment. This work could be a starting point for further studies on green extraction methods of bioactive triterpenoids from Chaga.  相似文献   
59.
Multi‐addressable photophysical properties of new synthesized photochromic materials based on photochromic dihydroindolizine system (DHI) covalently linked to N‐acyl‐11 aminoundecanoic acid (AUDA) or to its sodium salt or to its ester, through an amidic or urethane linkage have been studied. The DHI skeleton in these compounds is substituted in both the fluorene part (region A) or in the heterocyclic base (region B) with the gelling moieties. These molecules have been designed to respond to their environment. Interestingly, they are shown to act as efficient gelators for polar organic fluids, water and obviously they exhibit a thermosensitive answer as low molecular mass organogelators. In these fluids, the aggregative properties are totally suppressed upon conversion to neutral carboxylic species. The gels of these carboxylate sodium salts are shown to be markedly affected by light irradiation. Supramolecular gelating assemblies can be disrupted by the photoinduced ring opening of the DHI subunit, so that the macroscopic flowing property is recovered. Upon a further thermal treatment, the system is reversibly converted back to the supramolecular network. Controlled gelation could be achieved using temperature, light, or acidity as external stimuli. These new synthesized photochromic gels with their multi‐addressable properties will find their applications as super photoresponsive materials. Developing and tuning of the photophysical properties of the synthesized compounds by the amide and urethane substituents in the 4‐position of the fluorene and pyridazine regions have been achieved. The absorption maxima (λmax) and the half‐lives (t1/2) of the colored betaines were detected in all cases using UV/VIS spectrophotometric measurements. Irradiation of DHI 12‐20 in CH2Cl2 or in acetonitrile solutions at ambient temperature with polychromatic light leads to the formation of red to red‐violet colored betaines 12 ′ ‐20 ′. The kinetics of the bleaching process of betaines 12 ′ ‐20 ′ to DHIs 12‐20 were found to take place in the second range (96‐218 s) and fit well the first order thermal back reaction. Some of these DHIs showed a photostability higher than that of the standard one. These interesting photophysical properties will help this family of compounds to find useful applications. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
60.
This paper presents a finite element algorithm for the simulation of thermo‐hydrodynamic instabilities causing manufacturing defects in injection molding of plastic and metal powder. Mold‐filling parameters determine the flow pattern during filling, which in turn influences the quality of the final part. Insufficiently, well‐controlled operating conditions may generate inhomogeneities, empty spaces or unusable parts. An understanding of the flow behavior will enable manufacturers to reduce or even eliminate defects and improve their competitiveness. This work presents a rigorous study using numerical simulation and sensitivity analysis. The problem is modeled by the Navier–Stokes equations, the energy equation and a generalized Newtonian viscosity model. The solution algorithm is applied to a simple flow in a symmetrical gate geometry. This problem exhibits both symmetrical and non‐symmetrical solutions depending on the values taken by flow parameters. Under particular combinations of operating conditions, the flow was stable and symmetric, while some other combinations leading to large thermally induced viscosity gradients produce unstable and asymmetric flow. Based on the numerical results, a stability chart of the flow was established, identifying the boundaries between regions of stable and unstable flow in terms of the Graetz number (ratio of thermal conduction time to the convection time scale) and B, a dimensionless ratio indicating the sensitivity of viscosity to temperature changes. Sensitivities with respect to flow parameters are then computed using the continuous sensitivity equations method. We demonstrate that sensitivities are able to detect the transition between the stable and unstable flow regimes and correctly indicate how parameters should change in order to increase the stability of the flow. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号