首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   325篇
  免费   3篇
  国内免费   7篇
化学   19篇
力学   157篇
数学   109篇
物理学   50篇
  2023年   1篇
  2022年   6篇
  2021年   3篇
  2020年   3篇
  2019年   1篇
  2018年   2篇
  2017年   3篇
  2016年   5篇
  2015年   4篇
  2014年   5篇
  2013年   20篇
  2012年   7篇
  2011年   22篇
  2010年   12篇
  2009年   19篇
  2008年   18篇
  2007年   25篇
  2006年   24篇
  2005年   16篇
  2004年   13篇
  2003年   9篇
  2002年   7篇
  2001年   5篇
  2000年   8篇
  1999年   8篇
  1998年   8篇
  1997年   4篇
  1995年   4篇
  1994年   3篇
  1993年   1篇
  1992年   1篇
  1991年   3篇
  1990年   3篇
  1989年   2篇
  1988年   4篇
  1987年   9篇
  1986年   5篇
  1985年   11篇
  1984年   14篇
  1983年   6篇
  1982年   2篇
  1981年   6篇
  1978年   3篇
排序方式: 共有335条查询结果,搜索用时 250 毫秒
121.
A finite element method is given to obtain the numerical solution of the coupled equations in velocity and magnetic field for unsteady MHD flow through a pipe having arbitrarily conducting walls. Pipes of rectangular, circular and triangular sections have been taken for illustration. Computations have been carried out for different Hartmann numbers and wall conductivity at various time levels. It is found that if the wall conductivity increases, the flux through a section decreases. The same is the effect of increasing the Hartmann number. It is also observed that the steady state is approached at a faster rate for larger Hartmann numbers or larger wall conductivity. Selected graphs are given showing the behaviour of velocity, induced magnetic field and flux across a section.  相似文献   
122.
We report studies of the behaviour of a single driven domain wall in the 2-dimensional non-equilibrium zero temperature random-field Ising model, closely above the depinning threshold. It is found that even for very weak disorder, the domain wall moves through the system in percolative fashion. At depinning, the fraction of spins that are flipped by the proceeding avalanche vanishes with the same exponent as the infinite percolation cluster in percolation theory. With decreasing disorder strength, however, the size of the critical region decreases. Our numerical simulation data appear to reflect a crossover behaviour to an exponent at zero disorder strength. The conclusions of this paper strongly rely on analytical arguments. A scaling theory in terms of the disorder strength and the magnetic field is presented that gives the values of all critical exponent except for one, the value of which is estimated from scaling arguments. Received: 13 February 1998 / Accepted: 30 March 1998  相似文献   
123.
This paper describes the use of the MacCormack explicit time-spilitting scheme in the development of a two-dimensional (in plan) hydraulic simulation model that solves the St. Venant equations. Various tests devised to assess the performance of the method have been performed and the results are reported. Finally, two industrial applications of the model are presented. The method has been found to be computationally efficient and warrants further development.  相似文献   
124.
An approach for the numerical solution of flow problems based on the concept of fundamental solutions of differential equations is described. This approach uses the finite element methodology but does not rely on the concept of variational principle or that of residuals. The approach is shown to be well-suited for many types of flow problems. Various applications of this approach are discussed in this paper, with particular emphasis placed on the solution of potential flows and viscous flows containing appreciable regions of separation.  相似文献   
125.
Traditionally, as much as 80% or more of an ethanol fermentation broth is water that must be removed. This mixture is not only costly to separate but also produces a large aqueous stream that must then be disposed of or recycled. Integrative approaches to water reduction include increasing the biomass concentration during fermentation. In this paper, experimental results are presented for the rheological behavior of high-solids enzymatic cellulose hydrolysis and ethanol fermentation for biomass conversion using Solka Floc as the model feedstock. The experimental determination of the viscosity, shear stress, and shear rate relationships of the 10 to 20% slurry concentrations with constant enzyme concentrations are performed with a variable speed rotational viscometer (2.0 to 200 rpm) at 40 °C. The viscosities of enzymatic suspension observed were in range of 0.0418 to 0.0144, 0.233 to 0.0348, and 0.292 to 0.0447 Pa s for shear rates up to 100 reciprocal seconds at 10, 15, and 20% initial solids (w/v), respectively. Computational fluid dynamics analysis of bioreactor mixing demonstrates the change in bioreactor mixing with increasing biomass concentration. The portion-loading method is shown to be effective for processing high-solids slurries.  相似文献   
126.
127.
We propose a micromixer for obtaining better efficiency of vortex induced electroosmotic mixing of non-Newtonian bio-fluids at a relatively higher flow rate, which finds relevance in many biomedical and biological applications. To represent the rheology of non-Newtonian fluid, we consider the Carreau model in this study, while the applied electric field drives the constituent components in the micromixer. We show that the spatial variation of the applied field, triggered by the topological change of the bounding surfaces, upon interacting with the non-uniform surface potential gives rise to efficient mixing as realized by the formation of vortices in the proposed micromixer. Also, we show that the phase-lag between surface potential leads to the formation of asymmetric vortices. This behavior offers better mixing performance following the appearance of undulation on the flow pattern. Finally, we establish that the assumption of a point charge in the paradigm of electroosmotic mixing, which is not realistic as well, under-predicts the mixing efficiency at higher amplitude of the non-uniform zeta potential. The inferences of the present analysis may guide as a design tool for micromixer where rheological properties of the fluid and flow actuation parameters can be simultaneously tuned to obtain phenomenal enhancement in mixing efficiency.  相似文献   
128.
The effect of magnetic field has been examined on rheological models of blood. One. of them is the Power Law model and the other is the generalized Maxwell model. It is noticed that the magnetic field has a significant effect on the flow phenomena. The investigation shows that the model considered here is capable of taking into account the rheological properties affecting the blood flow and hemodynamic features, which may be important for medical doctors to predict diseases for individuals on the basis of the pattern of flow for an elastic artery in the presence of a transverses magnetic field. The effects of a magnetic field have been used to control the flow, which may be useful in certain hypertension cases, etc.  相似文献   
129.
In this paper we modify the constitutive relation derived by Reiner (1945), to describe dilatancy in wet sand, by suggesting that the shear viscosity would depend on the shear rate and the volume fraction. We then look at the flow of a saturated densely packed bed of particles (with liquid in the pores) between two horizontal flat plates. We obtain exact solutions for a very special case.  相似文献   
130.
Abstract

The two-dimensional boundary layer equations for a class of non-Newtonian fluids, for which the apparent viscosity can be expressed as a polynomial in the second scalar invariant of the rate of strain tensor, have been derived. These equations have been employed to analyse the flow near a stagnation point over a stationary impermeable wall. The non-Newtonian effects on the boundary layer velocity profile and the wall skin friction have been studied, and compared with the corresponding Newtonian fluid. The fluid velocity in the boundary layer has been shown to be retarded by the non-Newtonian effect while the skin friction increases proportionate to it.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号