首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   217篇
  免费   3篇
  国内免费   3篇
化学   18篇
力学   110篇
数学   67篇
物理学   28篇
  2023年   1篇
  2022年   5篇
  2021年   3篇
  2020年   3篇
  2018年   2篇
  2017年   3篇
  2016年   4篇
  2015年   4篇
  2014年   4篇
  2013年   12篇
  2012年   7篇
  2011年   21篇
  2010年   9篇
  2009年   12篇
  2008年   14篇
  2007年   20篇
  2006年   16篇
  2005年   13篇
  2004年   13篇
  2003年   8篇
  2002年   4篇
  2001年   2篇
  2000年   4篇
  1999年   6篇
  1998年   3篇
  1997年   2篇
  1995年   4篇
  1994年   2篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1988年   3篇
  1987年   3篇
  1986年   1篇
  1985年   3篇
  1984年   4篇
  1983年   1篇
  1981年   1篇
排序方式: 共有223条查询结果,搜索用时 15 毫秒
21.
This paper presents experimental investigations on nitrogen/non-Newtonian fluid two-phase flow in vertical noncircular microchannels, which have square or triangular cross-section with the hydraulic diameters being Dh = 2.5, 2.886 and 0.866 mm, respectively, by visualization method. Three non-Newtonian aqueous solutions with typical rheological properties, i.e., 0.4% carboxymethyl cellulose (CMC), 0.2% polyacrylamide (PAM) and 0.2% xanthan gum (XG) are chosen as the working fluids. The common flow patterns are identified as slug flow, churn flow and annular flow. The dispersed bubble flow is only found in the case with nitrogen/CMC solution two-phase flow in the largest channel. A new flow pattern of nitrogen/PAM solution two-phase flow, named chained bubble/slug flow, is observed in all the test channels. The flow regime maps are also developed and the results show that the rheological properties of the non-Newtonian fluid have remarkable influence on the flow pattern transitions. The geometrical factors of the microchannel such as the cross-section shape and hydraulic diameter of the channel can also affect the flow regime map. Finally, the results obtained in this work are compared with the available flow pattern transitions.  相似文献   
22.
In microfluidic devices it has been suggested a scheme for enhancing the mixing of two fluids is to use patterned, slip boundary conditions. This has been shown to induce significant transverse flow for Newtonian fluids [S.C. Hendy, M. Jasperse, J. Burnell, Effect of patterned slip on micro- and nanofluidic flows, Phys. Rev. E 72 (2005) 016303]. Here we study the effect of patterned slip on non-Newtonian fluids. Using a power-law model it is shown for shear-thickening fluids patterned slip can induce significant transverse flows comparable in size to those produced for Newtonian fluids. However, for shear-thinning fluids this transverse flow is suppressed. We predict a convenient way to increase the transverse flow for shear-thinning fluids is to use a patterned slip boundary condition coupled to a sinusoidally time-varying pressure gradient. This system is studied using a simple linearized White–Metzner model which has a power-law viscosity function [R.B. Bird, R.C. Armstrong, O. Hassager, Dynamics of Polymeric Liquids, Volume 1: Fluid Mechanics, John Wiley & Sons, New York, 1987]. In this case it is shown the two variations combine to produce transverse flow, which can be increased by increasing the frequency of the sinusoidal time-dependent fluctuation.  相似文献   
23.
The transient boundary layer flow and heat transfer of a viscous incompressible electrically conducting non-Newtonian power-law fluid in a stagnation region of a two-dimensional body in the presence of an applied magnetic field have been studied when the motion is induced impulsively from rest. The non-linear partial differential equations governing the flow and heat transfer have been solved by the homotopy analysis method and by an implicit finite-difference scheme. For some cases, analytical or approximate solutions have also been obtained. The special interest are the effects of the power-law index, magnetic parameter and the generalized Prandtl number on the surface shear stress and heat transfer rate. In all cases, there is a smooth transition from the transient state to steady state. The shear stress and heat transfer rate at the surface are found to be significantly influenced by the power-law index N except for large time and they show opposite behaviour for steady and unsteady flows. The magnetic field strongly affects the surface shear stress, but its effect on the surface heat transfer rate is comparatively weak except for large time. On the other hand, the generalized Prandtl number exerts strong influence on the surface heat transfer. The skin friction coefficient and the Nusselt number decrease rapidly in a small interval 0<t*<1 and reach the steady-state values for t*≥4.  相似文献   
24.
The steady-state flow of a third grade fluid between concentric circular cylinders is considered and entropy generation due to fluid friction and heat transfer in the annular pipe is examined. Depending upon the fluid viscosity, entropy generation in the flow system varies. The third grade fluid is employed to account for the non-Newtonian effect while Vogel model is accommodated for temperature-dependent viscosity. The analysis is based on perturbation technique. The closed form solutions for velocity, temperature and entropy fields are presented. Entropy generation due to fluid friction and heat transfer in the flow system is formulated. The influence of viscosity parameters A and B on the entropy generation number is investigated. It is found that entropy generation number reduces with increasing viscosity parameter A, which is more pronounced in the region close to the annular pipe inner wall and opposite is true for increasing viscosity parameter B.  相似文献   
25.
We present an experimental study of the Faraday instability in which we compare the behavior of a Newtonian fluid (water-glycerine mixture) with that of a semi-dilute non-Newtonian solution of high molecular weight polymer. We show that although the dispersion relation of surface waves, derived for a layer of inviscid fluid, remains valid in that particular non-Newtonian case, the behavior of the instability threshold with frequency strongly differs from the Newtonian case. We explain this effect as a result of a frequency-dependent viscosity. The linear stability analysis of the non-Newtonian case shows a perfect agreement with the experimental results both for the dispersion relation and for the reduction of the instability threshold. We discuss the use of the characteristics of the Faraday experiment as a measurement tool to determine frequency dependent properties of non-Newtonian fluids. Received 5 January 1999  相似文献   
26.
27.
本文讨论一类非牛顿系统弱解的长时间性态,证明解在L2 范数下的衰减速率为(1 t)-n/4 达到和线性热方程一致.  相似文献   
28.
Solutions to the Equation of Non-Newtonian Polytropic Filtration Under Optimal Condition On Initial ValuesYuanHongjun(袁洪君)(De...  相似文献   
29.
The unsteady magnetohydrodynamic flow of an electrically conducting viscous incompressible non-Newtonian Bingham fluid bounded by two parallel non-conducting porous plates is studied with heat transfer considering the Hall effect. An external uniform magnetic field is applied perpendicular to the plates and the fluid motion is subjected to a uniform suction and injection. The lower plate is stationary and the upper plate moves with a constant velocity and the two plates are kept at different but constant temperatures. Numerical solutions are obtained for the governing momentum and energy equations taking the Joule and viscous dissipations into consideration. The effect of the Hall term, the parameter describing the non-Newtonian behavior, and the velocity of suction and injection on both the velocity and temperature distributions are studied.  相似文献   
30.
Numerical simulations of a droplet passing through an axisymmetric microfluidic contraction are presented, focusing on systems where one of the two liquids present is shear thinning. The simulations are performed using a transient Volume of Fluid (VOF) algorithm. When the droplet is shear thinning and the surrounding phase Newtonian, droplets deform in a similar way to Newtonian droplets that have a viscosity equal to the average viscosity of the shear thinning fluid while it is within the contraction. When the surrounding phase is shear thinning and the droplet Newtonian, droplets deform in a similar way to droplets contained within a Newtonian liquid that has a viscosity that is lower than that of the droplet. In both cases the behaviour of the shear thinning fluid can be broadly described in terms of a ‘characteristic’ Newtonian viscosity: However, determining the exact value of this viscosity without performing a full shear thinning simulation is not possible.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号