首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2136篇
  免费   143篇
  国内免费   35篇
化学   32篇
晶体学   11篇
力学   1136篇
综合类   2篇
数学   629篇
物理学   504篇
  2024年   1篇
  2023年   19篇
  2022年   16篇
  2021年   24篇
  2020年   47篇
  2019年   48篇
  2018年   54篇
  2017年   52篇
  2016年   58篇
  2015年   64篇
  2014年   65篇
  2013年   181篇
  2012年   82篇
  2011年   109篇
  2010年   104篇
  2009年   126篇
  2008年   107篇
  2007年   120篇
  2006年   99篇
  2005年   113篇
  2004年   90篇
  2003年   91篇
  2002年   71篇
  2001年   53篇
  2000年   63篇
  1999年   58篇
  1998年   57篇
  1997年   43篇
  1996年   41篇
  1995年   28篇
  1994年   33篇
  1993年   43篇
  1992年   31篇
  1991年   33篇
  1990年   13篇
  1989年   20篇
  1988年   16篇
  1987年   7篇
  1986年   9篇
  1985年   5篇
  1984年   7篇
  1983年   2篇
  1982年   4篇
  1981年   3篇
  1977年   2篇
  1975年   1篇
  1969年   1篇
排序方式: 共有2314条查询结果,搜索用时 15 毫秒
71.
In this paper, we consider the time‐periodic solution to a simplified version of Ericksen‐Leslie equations modeling the compressible hydrodynamic flow of nematic liquid crystals with a time‐periodic external force in a periodic domain in . By using an approach of parabolic regularization and combining with the topology degree theory, we establish the existence of the time‐periodic solution to the model under some smallness and symmetry assumptions on the external force. Then, we give the uniqueness of the periodic solution of this model.  相似文献   
72.
73.
关于非牛顿流体衰减性的一个注记   总被引:1,自引:0,他引:1  
In the study of long time asymptotic behaviors of the solutions to a class system of the incompressible non-Newtonian fluid flows in R3, it is proved that the weak solutions decay in L2 norm at (1+t) and the error of difference between non-Newtonian fluid and linear equation is also investigated. The findings are mainly based on the classic Fourier splitting methods.  相似文献   
74.
朱祥德  陈春刚  肖锋 《计算物理》2010,27(3):342-352
基于多矩VSIAM3格式及浸入边界法,提出一套在复杂计算区域内求解不可压缩流动的数值格式.不可压N-S方程使用VSIAM3格式进行离散,引入浸入边界法处理复杂、移动边界,使用虚拟网格方法计算动量方程修正项,同时还考虑了对连续方程的修正.使用标准算例对数值模式进行验证.  相似文献   
75.
A simple model for the numerical determination of separation effects in seeded atomic gas flows is presented. The model is based on the known possibility to provide a statistically convergent estimate of the exact solution for a linear transport equation using the test particle Monte Carlo method. Accordingly, the flow field of the main gas is preliminary calculated and as a second step the linear transport equations obtained by fixing the target distribution in the collision term of the Boltzmann equation for both main and minority components are solved. Both solutions are based on appropriately devised test particle Monte Carlo methods. The second step, the critical one in evaluating the separation effects, is exact and thereby completely free of numerical diffusion. The model is described in details and illustrated by 2D test cases of atomic separation in shock fronts.  相似文献   
76.
77.
The accurate three-dimensional (3D) velocity field measurement technique has been receiving large attention in the study of microfluidics. DHM-PTV technique was developed by combining the digital holographic microscopy and particle tracking velocimetry technique. DHM-PTV is an ideal method for measuring three-component-three-dimensional (3C-3D) velocity field in a microscale flow with a fairly good spatial resolution. The advances in the DHM-PTV technique enable the measurement of various microscale flows, such as transport of red blood cells in a microtube and 3D flows in microfluidic devices. DHM-PTV is also applied in studying the motile behavior of swimming microorganisms. DHM-PTV would play an important role in ascertaining the undiscovered basic physics in various microscale and biofluid flow phenomena. In the current study, the basic principle of the DHM-PTV technique and its typical applications to microscale flows are introduced and discussed.  相似文献   
78.
Measurement of drop sizes play vital role in applications dealing with gas/liquid flow mixtures. In the present work, drop sizes in vertical and horizontal pipe flows were determined using Malvern 2600HSD system that applies laser diffraction method. From the analysis of the experimental data obtained at two different pipe orientations, two separate expressions were developed to determine Sauter mean diameter, d 32. Except for the 20 m/s superficial gas velocity in vertical flow case, a good agreement was found between the developed expressions and the experimental data.  相似文献   
79.
This paper presents a finite element algorithm for the simulation of thermo‐hydrodynamic instabilities causing manufacturing defects in injection molding of plastic and metal powder. Mold‐filling parameters determine the flow pattern during filling, which in turn influences the quality of the final part. Insufficiently, well‐controlled operating conditions may generate inhomogeneities, empty spaces or unusable parts. An understanding of the flow behavior will enable manufacturers to reduce or even eliminate defects and improve their competitiveness. This work presents a rigorous study using numerical simulation and sensitivity analysis. The problem is modeled by the Navier–Stokes equations, the energy equation and a generalized Newtonian viscosity model. The solution algorithm is applied to a simple flow in a symmetrical gate geometry. This problem exhibits both symmetrical and non‐symmetrical solutions depending on the values taken by flow parameters. Under particular combinations of operating conditions, the flow was stable and symmetric, while some other combinations leading to large thermally induced viscosity gradients produce unstable and asymmetric flow. Based on the numerical results, a stability chart of the flow was established, identifying the boundaries between regions of stable and unstable flow in terms of the Graetz number (ratio of thermal conduction time to the convection time scale) and B, a dimensionless ratio indicating the sensitivity of viscosity to temperature changes. Sensitivities with respect to flow parameters are then computed using the continuous sensitivity equations method. We demonstrate that sensitivities are able to detect the transition between the stable and unstable flow regimes and correctly indicate how parameters should change in order to increase the stability of the flow. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
80.
Denys Dutykh 《Physics letters. A》2009,373(36):3212-3216
Water wave propagation can be attenuated by various physical mechanisms. One of the main sources of wave energy dissipation lies in boundary layers. The present work is entirely devoted to thorough analysis of the dispersion relation of the novel visco-potential formulation. Namely, in this study we relax all assumptions of the weak dependence of the wave frequency on time. As a result, we have to deal with complex integro-differential equations that describe transient behaviour of the phase and group velocities. Using numerical computations, we show several snapshots of these important quantities at different times as functions of the wave number. Good qualitative agreement with previous study [D. Dutykh, Eur. J. Mech. B/Fluids 28 (2009) 430] is obtained. Thus, we validate in some sense approximations made anteriorly. There is an unexpected conclusion of this study. According to our computations, the bottom boundary layer creates disintegrating modes in the group velocity. In the same time, the imaginary part of the phase velocity remains negative for all times. This result can be interpreted as a new kind of instability which is induced by the bottom boundary layer effect.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号