首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   0篇
  国内免费   1篇
化学   10篇
力学   13篇
数学   1篇
物理学   26篇
  2023年   2篇
  2021年   5篇
  2020年   2篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2015年   2篇
  2014年   1篇
  2013年   2篇
  2012年   3篇
  2011年   4篇
  2010年   5篇
  2009年   9篇
  2008年   6篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
排序方式: 共有50条查询结果,搜索用时 15 毫秒
11.
Our recent work revealed that speckles can be formed when nanofluids containing a proper volume fraction of nanoparticles are illuminated by a monochromatic laser beam [Qian M, Liu J, Yan M-S, Shen Z-H, Lu J, Ni XW, et al. Investigation on utilizing laser speckle velocimetry to measure the velocities of nanoparticles in nanofluids. Opt Express 2006; 14: 7559–66]. In this paper, two different physical models are established to figure out the speckle-formation mechanism. The photon–nanoparticle-collision model emphasizes the random collisions between photons and nanoparticles, and Monte Carlo method is used to simulate how the incident photons move in the vessel containing nanofluids. However, in the electric-dipole model, each illuminated nanoparticle becomes an electric dipole and sends out scattering lights, and the coherent addition of the scattering lights from nanoparticles is numerically calculated. Finally, from the numerical results, the speckle-formation mechanism is figured out.  相似文献   
12.
Review of nanofluids for heat transfer applications   总被引:2,自引:0,他引:2  
Research on nanofluids has progressed rapidly since its enhanced thermal conductivity was first repotted about a decade ago,though much controversy and inconsistency have been reported,and insufficient understanding of the formulation and mechanism of nanofluids further limits their applications.This work presents a critical review of research on heat transfer applications of nanofluids with the aim of identifying the limiting factors so as to push forward their further development.  相似文献   
13.
Effects of inclination angle on natural convection heat transfer and fluid flow in a two-dimensional enclosure filled with Cu-nanofluid has been analyzed numerically. The performance of nanofluids is tested inside an enclosure by taking into account the solid particle dispersion. The angle of inclination is used as a control parameter for flow and heat transfer. It was varied from  = 0° to  = 120°. The governing equations are solved with finite-volume technique for the range of Rayleigh numbers as 103  Ra  105. It is found that the effect of nanoparticles concentration on Nusselt number is more pronounced at low volume fraction than at high volume fraction. Inclination angle can be a control parameter for nanofluid filled enclosure. Percentage of heat transfer enhancement using nanoparticles decreases for higher Rayleigh numbers.  相似文献   
14.
Natural convection heat transfer of nanofluids in horizontal enclosures heated from below is investigated theoretically. The main idea upon which the present work is based is that nanofluids behave more like a single-phase fluid rather than like a conventional solid-liquid mixture, which implies that all the convective heat transfer correlations available for single-phase flows can be extended to nanoparticle suspensions, provided that the thermophysical properties appearing in them are the nanofluid effective properties calculated at the reference temperature. In this connection, two empirical equations, based on a wide variety of experimental data reported in the literature, are developed for the evaluation of the nanofluid effective thermal conductivity and dynamic viscosity, whereas the other effective properties are evaluated by the traditional mixing theory. The heat transfer enhancement that derives from the dispersion of nano-sized solid particles into the base liquid is calculated for different operating conditions, nanoparticle diameters, and combinations of solid and liquid phases. One of the fundamental results is the existence of an optimal particle loading for maximum heat transfer across the bottom-heated enclosure. In particular, for any assigned combination of suspended nanoparticles and base liquid, it is found that the optimal volume fraction increases as the nanofluid average temperature increases, and may either increase or decrease with increasing the nanoparticle size according as the flow is laminar or turbulent. Moreover, the optimal volume fraction has a peak at a definite value of the Rayleigh number of the base fluid, that depends on both the average temperature of the nanofluid and the diameter of the suspended nanoparticles.  相似文献   
15.
Yuanqiao Rao   《Particuology》2010,8(6):549-555
There is no doubt about the potential technological significance of nanofluids. The promising application areas have been identified as effective heat transfer fluids, contrast agents in magnetic resonance imaging, magnetohyperthermia treatment, precursors to high performance nanocomposites and ordered nanostructures. However, commercial applications are rare, in part due to the limited understanding of the nanofluid fundamentals such as colloid stability, phase diagrams and rheology. This paper intends to provide a brief overview of the scientific disciplines that are important to nanofluids, and the interconnection among different disciplines in order to gain a perspective on the future development of this intriguing area.  相似文献   
16.
Formulation of nanofluids for natural convective heat transfer applications   总被引:7,自引:0,他引:7  
The paper is concerned about formulation of aqueous based nanofluids and its application under natural convective heat transfer conditions. Titanium dioxide nanoparticles are dispersed in distilled water through electrostatic stabilization mechanisms and with the aid of a high shear mixing homogenizer. Nanofluids formulated in such a way are found very stable and are used to investigate their heat transfer behaviour under the natural convection conditions. The preliminary results are presented in this paper. Both transient and steady heat transfer coefficients are measured and the results show a systematic decrease in the natural convective heat transfer coefficient with increasing particle concentration. This is in contradiction to the initial expectation. Possible reasons for the observations are discussed.  相似文献   
17.
A microfluidic chemical solution method is developed for the synthesizing Cu nanofluids.The method replaces batch-based macroreactors in the conventional chemical solution method by continuous-flow microfluidic microreactors,thereby enabling the synthesis of nanofluids with various microstructures.The Cu nanofluids synthesized by this technology show a better stability,remaining stable even after more than 100h standing.The measured thermal conductivity shows that the presence of nanoparticles can either upgrade or downgrade fluid conductivity,a phenomenon predicted by the recent thermal-wave theory of nanofluids.  相似文献   
18.
《印度化学会志》2021,98(3):100037
In recent years, research on heat transfer and related equipment has been one of the topics of interest in many different industries. The use of conventional fluids in heat transfer due to their low thermal properties has created problems in this area, so the use of nanofluids in many cases has been a solution to overcome this problem. The parameters affecting the thermophysical and thermal properties of nanofluids are temperature, concentration, size, shape, pH, surfactant and ultrasonic time, among which temperature and concentration have the greatest effect. Existing models and studies in the field of nanofluids are limited to the type of nanoparticles and base fluids and their operating range, and there is no comprehensive model for predicting thermal properties. In the present study, models and theories regarding the determination of thermal conductivity of nanofluids and other thermophysical properties have been comprehensively compiled and the mechanisms for increasing the thermal properties as well as the effective parameters and the effect of each of them on improving the properties are presented. In general, the results showed that thermal properties improve with increasing concentration and temperature. Finally, the role of nanofluids effect on thermal performance in the heat exchangers is studied and the results are summarized.  相似文献   
19.
Nanofluids’ thermophysical properties and heat transfer performance has been investigated for many years, while research on their surface tension (ST) and wetting behavior is very limited. To assess nanofluids potential as industrial products, a complete picture is required to prove their performance in a specific application. Boiling heat transfer, microfluidics and drug development are among the applications where ST is a variable. ST of water-based ZnO nanofluids were measured in the presence and absence of direct ultrasonication. The experiments covered variation of ST with ZnO concentration (0.05–0.4 vol%), ultrasonication amplitude (40% and 100%) and duration. To the best of the authors’ knowledge, this is the first report of ST– ultrasonication process relation for a nanofluid. Results showed that after direct ultrasonication, nanofluids ST is strongly affected by the temperature raise, and in those cases relative ST may provide a clearer picture. A nano-film over individual and agglomerated nanoparticles spotted via TEM imaging was affected from the ultrasonication. Such a nano-film can play a key role in the anomalous thermal transport and wettability of nanofluids. Statistical analyses revealed that changes in ultrasonication amplitude resulted in a statistically significance difference on nanofluid ST and relative ST. Changes in nanoparticle concentration caused a significant difference on the nanofluid ST while the difference in relative ST was insignificant. Variation of ultrasonication duration caused significant variations on the relative ST while the difference in nanofluid ST was not significant. This work highlights that based on specific applications ST and other related features of any nanofluid can be adjusted employing proper ultrasonication conditions.  相似文献   
20.
Natural convection in a square porous cavity filled with a nanofluid in conditions of thermal stratification has been numerically studied. The mathematical model has been formulated in terms of the dimensionless stream function and temperature using the Darcy–Boussinesq approximation and Tiwari and Das' nanofluid model with new more realistic empirical correlations for the physical properties of the nanofluids. Formulated partial differential equations along with the corresponding boundary conditions have been solved by the finite difference method. Particular efforts have been focused on the effects of the Rayleigh number, thermal stratification parameter, porosity of the porous medium, solid volume fraction parameter of nanoparticles, and the solid matrix of the porous medium (glass balls and aluminum foam) on the local and average Nusselt numbers, streamlines and isotherms. It has been observed an essential effect of thermal stratification parameter on heat and fluid flow fields.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号