首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2939篇
  免费   69篇
  国内免费   39篇
化学   835篇
晶体学   13篇
力学   493篇
综合类   5篇
数学   1112篇
物理学   589篇
  2023年   29篇
  2022年   49篇
  2021年   63篇
  2020年   84篇
  2019年   69篇
  2018年   64篇
  2017年   69篇
  2016年   91篇
  2015年   68篇
  2014年   106篇
  2013年   397篇
  2012年   97篇
  2011年   116篇
  2010年   94篇
  2009年   151篇
  2008年   143篇
  2007年   165篇
  2006年   99篇
  2005年   83篇
  2004年   97篇
  2003年   104篇
  2002年   87篇
  2001年   69篇
  2000年   66篇
  1999年   66篇
  1998年   106篇
  1997年   56篇
  1996年   52篇
  1995年   44篇
  1994年   29篇
  1993年   26篇
  1992年   19篇
  1991年   30篇
  1990年   19篇
  1989年   11篇
  1988年   17篇
  1987年   8篇
  1986年   11篇
  1985年   16篇
  1984年   17篇
  1983年   9篇
  1982年   7篇
  1981年   8篇
  1980年   6篇
  1979年   2篇
  1978年   6篇
  1977年   7篇
  1976年   6篇
  1975年   3篇
  1974年   2篇
排序方式: 共有3047条查询结果,搜索用时 15 毫秒
941.
Studies in mathematics education often point to the necessity for students to engage in more cognitively demanding activities than just solving tasks by applying given solution methods. Previous studies have shown that students that engage in creative mathematically founded reasoning to construct a solution method, perform significantly better in follow up tests than students that are given a solution method and engage in algorithmic reasoning. However, teachers and textbooks, at least occasionally, provide explanations together with an algorithmic method, and this could possibly be more efficient than creative reasoning. In this study, three matched groups practiced with either creative, algorithmic, or explained algorithmic tasks. The main finding was that students that practiced with creative tasks did, outperform the students that practiced with explained algorithmic tasks in a post-test, despite a much lower practice score. The two groups that got a solution method presented, performed similarly in both practice and post-test, even though one group got an explanation to the given solution method. Additionally, there were some differences between the groups in which variables predicted the post-test score.  相似文献   
942.
This paper puts forth a simplified dynamic eddy-viscosity subgrid-scale model for the vorticity transport equation which is employed in a large eddy simulation study of freely evolving isotropic two-dimensional turbulent flows. The dynamic parameter is averaged in space, thereby retrieving a spatially constant value which only varies in time. The proposed dynamic model is applied to a two-dimensional decaying turbulence problem in a square periodic box, which is a standard prototype of more realistic turbulent flows in the atmosphere and oceans, in order to eliminate any possible errors associated with the boundary conditions or mesh non-uniformities. Compared with high-resolution direct numerical simulations, the performance of the dynamic model is systematically investigated considering various filtering strategies by means of test filters. The effects of the computational resolution and the filtering ratio between the test and the grid filters are also studied by using a huge set of parameters.  相似文献   
943.
An effective way of using computational fluid dynamics (CFD) to simulate flow about a rotating device—for example, a wind or marine turbine—is to embed a rotating region of cells inside a larger, stationary domain, with a sliding interface between. This paper describes a simple but effective method for implementing this as an internal Dirichlet boundary condition, with interfacial values obtained by interpolation from halo nodes. The method is tested in two finite‐volume codes: one using block‐structured meshes and the other unstructured meshes. Validation is performed for flow around simple, isolated, rotating shapes (cylinder, sphere and cube), comparing, where possible, with experiment and the alternative CFD approach of fixed grid with moving walls. Flow variables are shown to vary smoothly across the sliding interface. Simulations of a tidal‐stream turbine, including both rotor and support, are then performed and compared with towing‐tank experiments. Comparison between CFD and experiment is made for thrust and power coefficients as a function of tip‐speed ratio (TSR) using Reynolds‐averaged Navier–Stokes turbulence models and large‐eddy simulation (LES). Performance of most models is good near the optimal TSR, but simulations underestimate mean thrust and power coefficients in off‐design conditions, with the standard k? turbulence model performing noticeably worse than shear stress transport kω and Reynolds‐stress‐transport closures. LES gave good predictions of mean load coefficients and vital information about wake structures but at substantial computational cost. Grid‐sensitivity studies suggest that Reynolds‐averaged Navier–Stokes models give acceptable predictions of mean power and thrust coefficients on a single device using a mesh of about 4 million cells. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
944.
945.
The results of experimental observations and mathematical modeling of corona formation on the tips of grounded rods are presented as a function of their tip height, curvature radius, the magnitude and polarity of the applied electric field producing corona. The investigations demonstrate that corona current depends on the active volume of zone in which electric field strength exceeds the breakdown criteria for air. The mathematical model was verified with the experimental data, enabling dependence of corona current on rod tip height, tip radius and applied electric field strength to be quantified with the need for a plethora of experiments.  相似文献   
946.
We describe a semi‐implicit volume‐of‐fluid free‐surface‐modelling methodology for flow problems involving violent free‐surface motion. For efficient computation, a hybrid‐unstructured edge‐based vertex‐centred finite volume discretisation is employed, while the solution methodology is entirely matrix free. Pressures are solved using a matrix‐free preconditioned generalised minimum residual algorithm and explicit time‐stepping is employed for the momentum and interface‐tracking equations. The high resolution artificial compressive (HiRAC) volume‐of‐fluid method is used for accurate capturing of the free surface in violent flow regimes while allowing natural applicability to hybrid‐unstructured meshes. The code is parallelised for solution on distributed‐memory architectures and evaluated against 2D and 3D benchmark problems. Good parallel scaling is demonstrated, with almost linear speed‐up down to 6000 cells per core. Finally, the code is applied to an industrial‐type problem involving resonant excitation of a fuel tank, and a comparison with experimental results is made in this violent sloshing regime. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
947.
Multi-scale models based on computational homogenisation are nowadays developed for the simulation of complex material behaviour. The use of homogenisation techniques on finite-sized representative volume elements in the presence of quasi-brittle damage may lead to the presence of snap-backs in the macroscopic material response. A methodology to simulate this type of response in the multi-scale technique is proposed, based on the control of the dissipation at the mesoscopic scale. To cite this article: T.J. Massart et al., C. R. Mecanique 333 (2005).  相似文献   
948.
In order to describe the complex cyclic hardening and softening properties of austenitic steels, we developed a simple phenomenological plasticity model during previous work. Now, we embed the model in a thermomechanical framework such that the second law in terms of the Clausius–Duhem inequality is fulfilled. Since the thermomechanical generalisation of the model is a rather formal and in some sense an arbitrary procedure, we check the implications of the generalised phenomenological model in context of two thermomechanical investigations. First, we study the fraction of the plastic work, which is not dissipated as heat and consequently stored in the material. Second, based on some simplifying assumptions, we present a semi-analytical solution of the thermomechanical problem of a cylindrical rod heated by plastic dissipation under uniaxial tension–compression loading. In both cases, the model response is in accordance with experimental observations.  相似文献   
949.
R. K. Livesley 《Meccanica》1992,27(3):161-172
This paper extends previous work on the limit analysis of ductile frames and plane masonry arches to the limit analysis of three-dimensional masonry structures. A lower-bound approach is developed which can handle three-dimensional collapse mechanisms involving any combination of sliding, twisting and hingeing at the block interfaces. A computer program for determining the collapse load of such structures is used to study (a) the equilibrium limits of a block with four contact points resting on an inclined plane and (b) the collapse of a semicircular arch of four blocks. The paper also describes experimental and computational work on a radially symmetric model dome of 380 blocks subject to foundation settlement.
Sommario Il presentre contributo estende al campo delle structture tridimensionali in muratura un precedente lavoro sull'analisi limite di telai duttili ed archi in muratura piani. Si e' sviluppato un approccio statico che analizza meccanismi di collasso tridimensionale ottenuti per combinazione dei meccanismi semplici di scorrimento e rotazione nel piano e fuori dal piano delle superfici di interfaccia tra i blocchi. Si descrivono (a) i limiti di equilibrio di un blocco con 4 punti di contatto su base inclinata, (b) le condizioni di collasso di un arco semicircolare costituito da quattro blocchi, applicando un programma di calcolo redatto per l'analisi e la definizione del carico di collasso di tali strutture. La terza parte dell'articolo presenta il lavoro sperimentale e di calcolo sviluppato su un modello di cupola a simmetria radiale costituita da 380 blocchi soggetta a cedimenti fondali.
  相似文献   
950.
The initial boundary-value linear stability problem for small localised axisymmetric disturbances in a homogeneous elastic wave guide, with the free upper surface and the lower surface being rigidly attached to a half-space, is formally solved by applying the Laplace transform in time and the Hankel transforms of zero and first orders in space. An asymptotic evaluation of the solution, expressed as a sum of inverse Laplace-Hankel integrals, is carried out by using the approach of the mathematical formalism of absolute and convective instabilities. It is shown that the dispersion-relation function of the problem D0 (κ, ω), where the Hankel parameter κ is substituted by a wave number (and the Fourier parameter) κ, coincides with the dispersion-relation function D0 (k, ω) for two-dimensional (2-D) disturbances in a homogeneous wave guide, where ω is the frequency (and the Laplace parameter) in both cases. An analysis for localised 2-D disturbances in a homogeneous wave guide is then applied. We obtain asymptotic expressions for wave packets, triggered by axisymmetric perturbations localised in space and finite in time, as well as for responses to axisymmetric sources localised in space, with the time dependence satisfying eiω0t + O(e−εt) for t → ∞, where Im ω0 = 0, ε > 0, and t denotes time, i.e. for signalling with frequency ω0. We demonstrate that, for certain combinations of physical parameters, axisymmetric wave packets with an algebraic temporal decay and axisymmetric signalling with an algebraic temporal growth, as √t, i.e., axisymmetric temporal resonances, are present in a neutrally stable homogeneous wave guide. The set of physically relevant wave guides having axisymmetric resonances is shown to be fairly wide. Furthermore, since an axisymmetric part of any source is L2-orthogonal to its non-axisymmetric part, a 3-D signalling with a non-vanishing axisymmetric component at an axisymmetric resonant frequency will generally grow algebraically in time. These results support our hypothesis concerning a possible resonant triggering mechanism of certain earthquakes, see Brevdo, 1998, J. Elasticity, 49, 201–237.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号