首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23485篇
  免费   2214篇
  国内免费   1284篇
化学   7047篇
晶体学   188篇
力学   7672篇
综合类   252篇
数学   4896篇
物理学   6928篇
  2024年   35篇
  2023年   282篇
  2022年   464篇
  2021年   510篇
  2020年   624篇
  2019年   506篇
  2018年   533篇
  2017年   650篇
  2016年   789篇
  2015年   756篇
  2014年   1017篇
  2013年   1693篇
  2012年   1209篇
  2011年   1486篇
  2010年   1142篇
  2009年   1467篇
  2008年   1375篇
  2007年   1383篇
  2006年   1248篇
  2005年   1088篇
  2004年   1027篇
  2003年   903篇
  2002年   770篇
  2001年   625篇
  2000年   616篇
  1999年   546篇
  1998年   519篇
  1997年   488篇
  1996年   457篇
  1995年   414篇
  1994年   325篇
  1993年   298篇
  1992年   284篇
  1991年   230篇
  1990年   204篇
  1989年   164篇
  1988年   155篇
  1987年   100篇
  1986年   95篇
  1985年   118篇
  1984年   102篇
  1983年   47篇
  1982年   97篇
  1981年   41篇
  1980年   18篇
  1979年   17篇
  1978年   13篇
  1976年   11篇
  1971年   7篇
  1957年   9篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Turbulent flow simulation methods based on finite differences are attractive for their simplicity, flexibility and efficiency, but not always for accuracy or stability. This paper demonstrates that a good compromise is possible with the advected grid explicit (AGE) method. Starting from the same initial field as a previous spectral DNS, AGE method simulations of a planar turbulent wake were carried out as DNS, and then at three levels of reduced resolution. The latter cases were in a sense large‐eddy simulations (LES), although no specific sub‐grid‐scale model was used. Results for the two DNS methods, including variances and power spectra, were very similar, but the AGE simulation required much less computational effort. Small‐scale information was lost in the reduced resolution runs, but large‐scale mean and instantaneous properties were reproduced quite well, with further large reductions in computational effort. Quality of results becomes more sensitive to the value chosen for one of the AGE method parameters as resolution is reduced, from which it is inferred that the numerical stability procedure controlled by the parameter is acting in part as a sub‐grid‐scale model. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
2.
It is assumed that the probability of destruction of a biological asset by natural hazards can be reduced through investment in protection. Specifically a model, in which the hazard rate depends on both the age of the asset and the accumulated invested protection capital, is assumed. The protection capital depreciates through time and its effectiveness in reducing the hazard rate is subject to diminishing returns. It is shown how the investment schedule to maximize the expected net present value of the asset can be determined using the methods of deterministic optimal control, with the survival probability regarded as a state variable. The optimal investment pattern involves “bang-bang-singular” control. A numerical scheme for determining jointly the optimal investment policy and the optimal harvest (or replacement) age is outlined and a numerical example involving forest fire protection is given.  相似文献   
3.
The turbulent flow in a compound meandering channel with a rectangular cross section is one of the most complicated turbulent flows, because the flow behaviour is influenced by several kinds of forces, including centrifugal forces, pressure‐driven forces and shear stresses generated by momentum transfer between the main channel and the flood plain. Numerical analysis has been performed for the fully developed turbulent flow in a compound meandering open‐channel flow using an algebraic Reynolds stress model. The boundary‐fitted coordinate system is introduced as a method for coordinate transformation in order to set the boundary conditions along the complicated shape of the meandering open channel. The turbulence model consists of transport equations for turbulent energy and dissipation, in conjunction with an algebraic stress model based on the Reynolds stress transport equations. With reference to the pressure–strain term, we have made use of a modified pressure–strain term. The boundary condition of the fluctuating vertical velocity is set to zero not only for the free surface, but also for computational grid points next to the free surface, because experimental results have shown that the fluctuating vertical velocity approaches zero near the free surface. In order to examine the validity of the present numerical method and the turbulent model, the calculated results are compared with experimental data measured by laser Doppler anemometer. In addition, the compound meandering open channel is clarified somewhat based on the calculated results. As a result of the analysis, the present algebraic Reynolds stress model is shown to be able to reasonably predict the turbulent flow in a compound meandering open channel. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
4.
A tridentate ligand, BPIEP: 2,6‐bis[1‐(2,6‐diisopropyl phenylimino) ethyl] pyridine, having central pyridine unit and two peripheral imine coordination sites was effectively employed in controlled/“living” radical polymerization of MMA at 90°C in toluene as solvent, CuIBr as catalyst, and ethyl‐2‐bromoisobutyrate (EBiB) as initiator resulting in well‐defined polymers with polydispersities Mw/Mn ≤ 1.23. The rate of polymerization follows first‐order kinetics, kapp = 3.4 × 10?5 s?1, indicating the presence of low radical concentration ([P*] ≤ 10?8) throughout the reaction. The polymerization rate attains a maximum at a ligand‐to‐metal ratio of 2:1 in toluene at 90°C. The solvent concentration (v/v, with respect to monomer) has a significant effect on the polymerization kinetics. The polymerization is faster in polar solvents like, diphenylether, and anisole, as compared to toluene. Increasing the monomer concentration in toluene resulted in a better control of polymerization. The molecular weights (Mn,SEC) increased linearly with conversion and were found to be higher than predicted molecular (Mn,Cal). However, the polydispersity remained narrow, i.e., ≤1.23. The initiator efficiency at lower monomer concentration approaches a value of 0.7 in 110 min as compared to 0.5 in 330 min at higher monomer concentration. The aging of the copper salt complexed with BPIEP had a beneficial effect and resulted in polymers with narrow polydispersitities and higher conversion. PMMA obtained at room temperature in toluene (33%, v/v) gave PDI of 1.22 (Mn = 8500) in 48 h whereas, at 50°C the PDI is 1.18 (Mn = 10,300), which is achieved in 23 h. The plot of lnkapp versus 1/T gave an apparent activation energy of polymerization as (ΔEapp) 58.29 KJ/mol and enthalpy of equilibrium (ΔH0eq) to 28.8 KJ/mol. Reverse ATRP of MMA was successfully performed using AIBN in bulk as well as solution. The controlled nature of the polymerization reaction was established through kinetic studies and chain extension experiments. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4996–5008, 2005  相似文献   
5.
In basin modelling the thermodynamics of a multicomponent multiphase fluid flux are computationally too expensive when derived from an equation of state and the Gibbs equality constraints. In this article we present a novel implicit molar mass formulation technique using binary mixture thermodynamics. The two proposed solution methods, with and without cross derivative terms between components, are based on a preconditioned Newton‐GMRES scheme for each time‐step with analytical computation of the derivatives. These new algorithms reduce significantly the numerical effort for the computation of the molar masses, and we illustrate the behavior of these methods with numerical computations. Copyright © 2004 John Wiley & Sons Ltd.  相似文献   
6.
This paper presents an evaluation of the capability of turbulence models available in the commercial CFD code FLUENT 6.0 for their application to hydrofoil turbulent boundary layer separation flow at high Reynolds numbers. Four widely applied two‐equation RANS turbulence models were assessed through comparison with experimental data at Reynolds numbers of 8.284×106 and 1.657×107. They were the standard k–εmodel, the realizable k–εmodel, the standard k–ωmodel and the shear‐stress‐transport (SST) k–ωmodel. It has found that the realizable k–εturbulence model used with enhanced wall functions and near‐wall modelling techniques, consistently provides superior performance in predicting the flow characteristics around the hydrofoil. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
7.
A high‐order accurate, finite‐difference method for the numerical solution of incompressible flows is presented. This method is based on the artificial compressibility formulation of the incompressible Navier–Stokes equations. Fourth‐ or sixth‐order accurate discretizations of the metric terms and the convective fluxes are obtained using compact, centred schemes. The viscous terms are also discretized using fourth‐order accurate, centred finite differences. Implicit time marching is performed for both steady‐state and time‐accurate numerical solutions. High‐order, spectral‐type, low‐pass, compact filters are used to regularize the numerical solution and remove spurious modes arising from unresolved scales, non‐linearities, and inaccuracies in the application of boundary conditions. The accuracy and efficiency of the proposed method is demonstrated for test problems. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
8.
The paper presents a new formulation of the integral boundary element method (BEM) using subdomain technique. A continuous approximation of the function and the function derivative in the direction normal to the boundary element (further ‘normal flux’) is introduced for solving the general form of a parabolic diffusion‐convective equation. Double nodes for normal flux approximation are used. The gradient continuity is required at the interior subdomain corners where compatibility and equilibrium interface conditions are prescribed. The obtained system matrix with more equations than unknowns is solved using the fast iterative linear least squares based solver. The robustness and stability of the developed formulation is shown on the cases of a backward‐facing step flow and a square‐driven cavity flow up to the Reynolds number value 50 000. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
9.
The matrix formula developed in the context of heterochain theory, M?w = M?wp + WF ( I ? M )?1 S , was applied to describe the molecular weight development during free‐radical multicomponent polymerization. All of the required probabilistic parameters are expressed in terms of the kinetic‐rate constants and the various concentrations associated with them. In free‐radical polymerization, the number of heterochain types, N, needs to be extrapolated to infinity, and such extrapolation is conducted with only three different N values. This matrix formula can be used as a benchmark test if other approximate approaches can give reasonable estimates of the weight‐average molecular weights. The moment equations with the average pseudo‐kinetic‐rate constants for branching and crosslinking reactions may provide poor estimates when the copolymer composition drift during polymerization is very significant. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2801–2812, 2004  相似文献   
10.
An equation for the kinetics of partial drop spreading is proposed. This equation was empirically derived from experimental data for the spreading kinetics of partially wetting liquids in terms of the wet area versus time. The equation has the form of an exponential power law (EPL), and transforms into the well-known power law for complete wetting, when the equilibrium contact angle approaches zero. The EPL fits very well available experimental data. To lend additional support to the validity of this generalized equation, it will be demonstrated that when it is transformed to present the dynamic contact angle (DCA), it fits very well DCA experimental data for other wetting processes, such as capillary flow and tape coating.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号