首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1037篇
  免费   153篇
  国内免费   244篇
化学   674篇
晶体学   27篇
力学   61篇
综合类   19篇
数学   216篇
物理学   437篇
  2024年   1篇
  2023年   46篇
  2022年   28篇
  2021年   45篇
  2020年   38篇
  2019年   36篇
  2018年   28篇
  2017年   53篇
  2016年   53篇
  2015年   52篇
  2014年   66篇
  2013年   85篇
  2012年   80篇
  2011年   66篇
  2010年   48篇
  2009年   67篇
  2008年   88篇
  2007年   60篇
  2006年   53篇
  2005年   50篇
  2004年   41篇
  2003年   41篇
  2002年   53篇
  2001年   48篇
  2000年   39篇
  1999年   18篇
  1998年   23篇
  1997年   13篇
  1996年   11篇
  1995年   17篇
  1994年   18篇
  1993年   14篇
  1992年   12篇
  1991年   6篇
  1990年   3篇
  1989年   4篇
  1988年   5篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
  1982年   3篇
  1981年   2篇
  1980年   1篇
  1979年   3篇
  1978年   2篇
  1976年   2篇
  1975年   3篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
排序方式: 共有1434条查询结果,搜索用时 281 毫秒
51.
A new method has been developed for the generation and subsequent reaction of ynolates in a micro flow reactor system. This new procedure allowed for ynolates to be prepared at 0 °C or ambient temperature within 1 min via a reductive lithiation reaction, whereas the corresponding batch processes generally require low temperature control and extended reaction times of up to 1 h. The resulting ynolates were applied to the olefination of carbonyl compounds, with the reactions reaching completion in a much shorter reaction time in the continuous flow reactor than the batch reactor. These results highlight the practical utility of the ynolate reaction, and represent the first reported example of the use of lithium naphthalenide in a flow microreactor, which would contribute to progress of the flash chemistry.  相似文献   
52.
We investigate the generalized polynomial Linard differential equations. Using the averaging theory of first and second order, we obtain the maximum number of limit cycles of the system.  相似文献   
53.
A composite of FeOOH nanocubes anchored on carbon ribbons has been synthesized and used as a cathode material for Li/O2 batteries. Fe2+ ion-exchanged resin serves as a precursor for both FeOOH nanocubes and carbon ribbons, which are formed simultaneously. The as-prepared FeOOH cubes are proposed to have a core–shell structure, with FeOOH as the shell and Prussian blue as the core, based on information from XPS, TEM, and EDS mapping. As a cathode material for Li/O2 batteries, FeOOH delivers a specific capacity of 14816 mA h g−1cathode with a cycling stability of 67 cycles over 400 h. The high performance is related to the low overpotential of the oxygen reduction/evolution reaction on FeOOH. The cube structure, the supporting carbon ribbons, and the -OOH moieties all contribute to the low overpotential. The discharge product Li2O2 can be efficiently decomposed in the FeOOH cathode after a charging process, leading to higher cycling stability. Its high activity and stability make FeOOH a good candidate for use in non-aqueous Li/O2 batteries.  相似文献   
54.
A neutron powder diffraction study on lithium titanate Li2TiO3 was performed at low temperatures. The monoclinic β-phase has been found to be stable over the whole investigated range of temperatures (4 K–300 K). A smooth and nonlinear increase of the lattice parameters has been observed upon heating and correlated to the behavior of interatomic distances. Lithium diffusion pathways in Li2TiO3 were estimated theoretically on the basis of the obtained structural data using bond-valence modeling. Experimentally diffusion pathways were evaluated by analysis of the negative nuclear scattering densities at 1073 K, which were reconstructed using a maximum entropy method. Although the bond-valence mismatch map indicated a possible Li diffusion either in ab plane or along c direction, analysis of the experimental data revealed that Li migration is thermodynamically less feasible in latter case.  相似文献   
55.
Lithium (Li) metal has attracted significant attention in areas that range from basic research to various commercial applications due to its high theoretical specific capacity (3860 mA h g−1) and low electrochemical potential (−3.04 vs. standard hydrogen electrode). However, dendrites often form on the surfaces of Li metal anodes during cycling and thus lead to battery failure and, in some cases, raise safety concerns. To overcome this problem, a variety of approaches that vary the electrolyte, membrane, and/or anode have been proposed. Among these efforts, the use of three-dimensional frameworks as Li hosts, which can homogenize and minimize the current density at the anode surface, is an effective approach to suppress the formation of Li dendrites. Herein, we describe the development of using carbon-based materials as Li hosts. While these materials can be fabricated into a variety of porous structures, they have a number of intrinsic advantages including low costs, high specific surface areas, high electrical conductivities, and wide electrochemical stabilities. After briefly summarizing the formation mechanisms of Li dendrites, various methods for controlling structural and surface chemistry will be described for different types of carbon-based materials from the viewpoint of improving their performance as Li hosts. Finally, we provide perspective on the future development of Li host materials needed to meet the requirements for their use in flexible and wearable devices and other contemporary energy storage techniques.  相似文献   
56.
7Li, 31P, and 19F solid-state nuclear magnetic resonance (NMR) spectroscopy was used to investigate the local arrangement of oxygen and fluorine in LiVPO4F1-yOy materials, interesting as positive electrode materials for Li-ion batteries. From the evolution of the 1D spectra versus y, 2D 7Li radiofrequency-driven recoupling (RFDR) experiments combined, and a tentative signal assignment based on density functional theory (DFT) calculations, it appears that F and O are not randomly dispersed on the bridging X position between two X–VO4–X octahedra (X = O or F) but tend to segregate at a local scale. Using DFT calculations, we analyzed the impact of the different local environments on the local electronic structure. Depending on the nature of the VO4X2 environments, vanadium ions are either in the +III or in the +IV oxidation state and can exhibit different distributions of their unpaired electron(s) on the d orbitals. Based on those different local electronic structures and on the computed Fermi contact shifts, we discuss the impact on the spin transfer mechanism on adjacent nuclei and propose tentative signal assignments. The O/F clustering tendency is discussed in relation with the formation of short VIVO vanadyl bonds with a very specific electronic structure and possible cooperative effect along the chain.  相似文献   
57.
The Liénard equation is of a high importance from both mathematical and physical points of view. However a question about integrability of this equation has not been completely answered yet. Here we provide a new criterion for integrability of the Liénard equation using an approach based on nonlocal transformations. We also obtain some of the previously known criteria for integrability of the Liénard equation as a straightforward consequence of our approach’s application. We illustrate our results by several new examples of integrable Liénard equations.  相似文献   
58.
The effect of magnetic field strength and orientation on two types of electromagnetically influenced turbulent flows was studied numerically under the Reynolds averaged Navier–Stokes (RANS) framework. Previous work (Wilson et al., 2014) used an electromagnetically extended linear eddy-viscosity model, whilst the current paper focuses on the performance of a more advanced Reynolds stress transport type model both with and without electromagnetic modifications proposed by Kenjereš et al. (2004). First, a fully-developed 2D channel flow is considered with a magnetic field imposed in either the wall-normal or streamwise direction. Both forms of the RSM gave good agreement with the DNS data for the wall-normal magnetic field across the range of Hartmann numbers with the additional electromagnetic terms providing a small, but noticeable, difference. For the streamwise magnetic field, where electromagnetic influence is only through the turbulence, the electromagnetically extended RSM performed well at moderate Hartmann numbers but returned laminar flow at the highest Hartmann number considered, contrary to the DNS. The RSM results were, however, significantly better than the previous eddy-viscosity model predictions. The second case is that of unsteady 3D Rayleigh–Bénard convection with a magnetic field imposed in either a horizontal or vertical direction. Results revealed that a significant reorganization of the flow structures is predicted to occur. For a vertically oriented magnetic field, the plume structures increase in number and become thinner and elongated along the magnetic field lines, leading to an increase in thermal mixing within the core in agreement with Hanjalić and Kenjereš (2000). With a horizontal magnetic field, the structures become two-dimensional and a striking realignment of the roll cells’ axes with the magnetic field lines occurs. The results demonstrate the capability of the Reynolds stress transport approach in modelling MHD flows that are relevant to industry and offer potential for those wishing to control levels of turbulence, heat transfer or concentration without recourse to mechanical means.  相似文献   
59.
对于pair-copula中的参数估计,大多假设copula函数的参数和条件变量独立,将参数简化成一个不依赖于条件变量的常数.本文假设copula函数的参数和条件变量不独立,该参数是以条件变量为自变量的一元函数.应用该方法实证分析了“克强指数”三个指标铁路货运量、工业用电量和贷款发放量的对数增长率之间的关系,研究发现该方法优于简化的pair-copula参数估计,并且得出在固定铁路货运量不变时,工业用电量和银行贷款发放量成负相关关系,且这种负相关性随铁路货运量增加而减弱.  相似文献   
60.
The anode materials Li4?xMgxTi5?xZrxO12 (x=0, 0.05, 0.1) were successfully synthesized by sol‐gel method using Ti(OC4H9)4, CH3COOLi·2H2O, MgCl2·6H2O and Zr(NO3)3·6H2O as raw materials. The crystalline structure, morphology and electrochemical properties of the as‐prepared materials were characterized by XRD, SEM, cyclic voltammograms (CV), electrochemical impedance spectroscopy (EIS) and charge‐discharge cycling tests. The results show that the lattice parameters of the Mg‐Zr doped samples are slightly larger than that of the pure Li4Ti5O12, and Mg‐Zr doping does not change the basic Li4Ti5O12 structure. The rate capability of Li4?xMgxTi5?xZrxO12 (x=0.05, 0.1) electrodes is significantly improved due to the expansile Li+ diffusion channel and reduced charge transfer resistance. In this study, Li3.95Mg0.05Ti4.95Zr0.05O12 represented a relatively good rate capability and cycling stability, after 400 cycles at 10 C, the discharge capacity retained as 134.74 mAh·g?1 with capacity retention close to 100%. The excellent rate capability and good cycling performance make Li3.95Mg0.05Ti4.95Zr0.05O12 a promising anode material in lithium‐ion batteries.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号