首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   938篇
  免费   26篇
  国内免费   121篇
化学   756篇
晶体学   1篇
力学   134篇
综合类   4篇
数学   21篇
物理学   169篇
  2024年   1篇
  2023年   31篇
  2022年   17篇
  2021年   15篇
  2020年   31篇
  2019年   23篇
  2018年   29篇
  2017年   16篇
  2016年   34篇
  2015年   22篇
  2014年   28篇
  2013年   54篇
  2012年   45篇
  2011年   51篇
  2010年   57篇
  2009年   80篇
  2008年   76篇
  2007年   69篇
  2006年   77篇
  2005年   51篇
  2004年   66篇
  2003年   43篇
  2002年   25篇
  2001年   25篇
  2000年   12篇
  1999年   16篇
  1998年   13篇
  1997年   8篇
  1996年   14篇
  1995年   5篇
  1994年   14篇
  1993年   4篇
  1992年   8篇
  1991年   5篇
  1990年   4篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
  1982年   2篇
  1981年   1篇
  1979年   1篇
  1976年   1篇
  1973年   1篇
  1971年   1篇
排序方式: 共有1085条查询结果,搜索用时 31 毫秒
991.
An extensive investigation of the ferromagnetic compound TlCo2S2 has resulted in new information on the electronic and magnetic structure. Electronic structure calculations showed that magnetic ordering is energetically favorable with a clear driving force for ferromagnetic coupling within the cobalt layers. TlCo2S2 is metallic and the conductivity is due to holes in the valence band. XPS single crystal measurements did not show evidence of mixed oxidation states of cobalt. Neutron powder diffraction resulted in a ferromagnetic structure with the magnetic moment in the ab-plane. The derived magnetic moment of the cobalt atom is at 10 K and is in very good agreement with the value, at 10 K, inferred from the magnetic hysteresis curve.  相似文献   
992.
The thermal decomposition and structural reconstruction of Mg-Fe-based hydrotalcites (HT) have been studied through thermogravimetric analyses, X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy and Mössbauer spectroscopy. The destruction of the layered structure took place at about 300°C. The broad peaks observed in the X-ray diffractograms suggest that the resultant oxides constitute a solid solution. For samples treated at temperatures higher than 500°C, the formation of the MgO and MgFe2O4 spinel phases is observed. 57Fe Mössbauer spectroscopy was employed to monitor the Fe chemical environment for the samples annealed at different temperatures (100-900°C). In situ XRD experiments revealed that the HTs start an interlayer contraction at about 180°C. This phenomenon is identified as being due to a grafting process for which the interlamellar anions attach to the layers through a covalent bond. The reconstruction of the HTs was also investigated and its efficiency depends on the thermal annealing temperature and the Mg/Fe ratio. The structure of the reconstructed samples was found to be exactly the same as the parent structure.  相似文献   
993.
Using various synthetic approaches, we have prepared over 50 new multinary bismuth oxyhalides which crystallize in four layered structure types. Most of the compounds belong to the three previously reported structure types involving fluorite- and CsCl-like metal-oxygen vs. metal-halogen layers as well as single or double halide ion sheets. The majority of Bi2−xAxQ0.6O2Z2 (A=Li, Na, K, Ca, Sr, Ba, Pb; Q=Rb, Cs; Z=Cl, Br, I) compounds crystallize in the tetragonal structure of Pb0.6Bi1.4Cs0.6O2Cl2 (Y2) while both Bi1.4Ba0.6Q0.6O2I2 (Q=Rb, Cs) oxyiodides adopt its orthorhombically distorted, partially ordered version. Due to the lower degree of substitution, the fluorite-like layers in the Y2 structure accommodate more A cations than previously known for related Bi compounds. However, very large Tl+ or Rb+ give compounds with another, as yet unknown, structure. We discuss the influence of size and charge of A cations and stoichiometry of [Bi2−xAxO2] fluorite layers on structure and stability of layered oxyhalides of bismuth. Also, we predict formation of isostructural compounds with smaller Q cations like Tl+ and K+.  相似文献   
994.
The synthesis, structure, and basic magnetic properties of Na2Co2TeO6 and Na3Co2SbO6 are reported. The crystal structures were determined by neutron powder diffraction. Na2Co2TeO6 has a two-layer hexagonal structure (space group P6322) while Na3Co2SbO6 has a single-layer monoclinic structure (space group C2/m). The Co, Te, and Sb ions are in octahedral coordination, and the edge sharing octahedra form planes interleaved by sodium ions. Both compounds have full ordering of the Co2+ and Te6+/Sb5+ ions in the ab plane such that the Co2+ ions form a honeycomb array. The stacking of the honeycomb arrays differ in the two compounds. Both Na2Co2TeO6 and Na3Co2SbO6 display magnetic ordering at low temperatures, with what appears to be a spin-flop transition found in Na3Co2SbO6.  相似文献   
995.
The nylon 6/MgAl layered double hydroxide (MgAl-LDH) nanocomposites have been prepared by melt intercalation of nylon 6 into the part organic dodecyl sulfate (DS) anion-modified MgAl(H-DS) interlayers. The structures and properties of MgAl(H-DS) and corresponding nanocomposites were characterized by ion chromotography, X-ray diffraction (XRD), transmission electron microscopy (TEM), differential scanning calorimetry (DSC), thermogravimetry analysis (TGA), and cone calorimeter test (CCT). The nanoscale dispersion of MgAl(H-DS) layers in the nylon 6 matrix has been verified by the disappearance of d001 XRD diffraction peak of MgAl(H-DS) and the observation of TEM image. DSC tests evince that these exfoliated MgAl(H-DS) layers play the role of nucleating agents with strong heterogeneous nucleation effect on the crystallization of nylon 6 and increase its crystallization temperature over 12 °C with only 5 wt% MgAl(H-DS). TGA tests show that the effect of alkaline catalysis degradation from LDH on nylon 6 decreases the thermal stability of nylon 6/MgAl-LDH nanocomposites. The data from the cone calorimeter tests show that the HRR and MLR values of the sample with 5 wt% MgAl(H-DS) decrease considerably to 664 kW/m2 and 0.161 g/m2 s from 1064 kW/m2 and 0.252 g/m2 s of pure nylon 6, respectively. This kind of exfoliated nanocomposite is promising for the application of flame-retardant polymeric materials.  相似文献   
996.
The structural properties and thermal decomposition processes of Co-Cu-Fe ternary hydrotalcites (HT) have been studied through X-ray diffraction, thermogravimetric measurements, Fourier-transform infrared and Mössbauer spectroscopies. Due to the strong Jahn-Teller effect, the Cu-Fe layered system is stabilized only in the presence of Co2+. At low Co2+ contents, additional phases are segregated in the solids. X-ray patterns show the presence of Cu(OH)2 and CuO. The decomposition process was investigated by in situ X-ray, in situ Mössbauer and FTIR experiments. By increasing the temperature from 25 °C up to 180 °C we observed that the structural disorder increases. This effect has been likely attributed to the Co2+→Co3+ oxidation since thermal decomposition was carried out under static air atmosphere. Part of the Co3+ cations could migrate to the interlayer region, thus forming a metastable compound that still has a layered structure. Collapse of the layered structure was observed at about 200 °C. By further increasing the temperature the system becomes more crystalline and the formation of Co3O4 is observed in the X-ray patterns. In Cu-rich HT, some of the carbonate anions are released at temperatures higher than 550 °C and this phenomenon is attributed to the formation of a carbonate-rich phase. The specific surface area data present its highest values in the temperature range where the collapse of the layered structure takes place.  相似文献   
997.
A layered perovskite compound with Na+, D3O+ ions (H3O+) and D2O molecules (H2O) in the interlayer, DxNa1−xLaTiO4·yD2O, has been prepared by an ion-exchange/intercalation reaction with dilute DCl solution, using an n=1 Ruddlesden-Popper phase, NaLaTiO4. Its structure has been analyzed in order to clarify the interlayer structure by Rietveld method, using powder neutron diffraction data. The structure analysis revealed that the layered structure changed from the space group P4/nmm-I4/mmm after the ion-exchange/intercalation reaction, and it induced the transformation of perovskite layers from staggered to an eclipsed configuration. The D2O molecules and D3O+ ions loaded in the interlayer statistically occupied the sites around a body center position of rectangular space surrounded by eight apical O atoms of TiO6 octahedra in upper and lower layers.  相似文献   
998.
The crystal structures of the two new synthetic compounds Co2TeO3Cl2 and Co2TeO3Br2 are described together with their magnetic properties. Co2TeO3Cl2 crystallize in the monoclinic space group P21/m with unit cell parameters a=5.0472(6) Å, b=6.6325(9) Å, c=8.3452(10) Å, β=105.43(1)°, Z=2. Co2TeO3Br2 crystallize in the orthorhombic space group Pccn with unit cell parameters a=10.5180(7) Å, b=15.8629(9) Å, c=7.7732(5) Å, Z=8. The crystal structures were solved from single crystal data, R=0.0328 and 0.0412, respectively. Both compounds are layered with only weak interactions in between the layers. The compound Co2TeO3Cl2 has [CoO4Cl2] and [CoO3Cl3] octahedra while Co2TeO3Br2 has [CoO2Br2] tetrahedra and [CoO4Br2] octahedra. The Te(IV) atoms are tetrahedrally [TeO3E] coordinated in both compounds taking the 5s2 lone electron pair E into account. The magnetic properties of the compounds are characterized predominantly by long-range antiferromagnetic ordering below 30 K.  相似文献   
999.
Two alkali metal uranates Rb2U2O7 and Rb8U9O31 have been synthesized by solid state reaction at high temperature and their crystal structures determined from single crystal X-ray diffraction data, collected with a three circles Brucker SMART diffractometer equipped by Mo(Kα) radiation and a charge-coupled device (CCD) detector. Their structures were solved using direct methods and Fourier difference techniques and refined by a least-square method on the basis of F2 for all unique reflections, with R1=0.043 for 53 parameters and 746 independent reflections with I?2σ(I) for Rb2U2O7, monoclinic symmetry, space group P21/c, , , , β=108.81(1)°, , , Z=2 and R1=0.036 for 141 parameters and 2065 independent reflections with I?2σ(I) for Rb8U9O31, orthorhombic, space group Pbna, , , , , , Z=4.The Rb2U2O7 structure presents a strong analogy with that of K2U2O7 and can be described by layers of distorted UO2(O4) octahedra built from dimeric units of edge shared octahedra further linked together by opposite corners. In Rb8U9O31 puckered layers are formed by the association of two different uranium polyhedra, pentagonal bipyramids and distorted octahedra. The structure of Rb8U9O31 is built from a regular succession of infinite ribbons similar to those observed in diuranates M2U2O7 (MK, Rb) and infinite three polyhedra wide ribbons , to create an original undulated sheets .For both compounds Rb+ ions occupy the interlayer space and exhibit comparable mobility with conductivity measurements indicating an Arrhenius-type behavior.  相似文献   
1000.
A series of the mixed transition metal compounds, Li[(Ni1/3Co1/3Mn1/3)1–x-y Al x B y ]O2-z F z (x = 0, 0.02, y = 0, 0.02, z = 0, 0.02), were synthesized via coprecipitation followed by a high-temperature heat-treatment. XRD patterns revealed that this material has a typical α-NaFeO2 type layered structure with R3- m space group. Rietveld refinement explained that cation mixing within the Li(Ni1/3Co1/3Mn1/3)O2 could be absolutely diminished by Al-doping. Al, B and F doped compounds showed both improved physical and electrochemical properties, high tap-density, and delivered a reversible capacity of 190 mAh/g with excellent capacity retention even when the electrodes were cycled between 3.0 and 4.7 V.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号