首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   941篇
  免费   28篇
  国内免费   121篇
化学   757篇
晶体学   1篇
力学   135篇
综合类   4篇
数学   21篇
物理学   172篇
  2024年   2篇
  2023年   33篇
  2022年   18篇
  2021年   16篇
  2020年   31篇
  2019年   23篇
  2018年   29篇
  2017年   16篇
  2016年   34篇
  2015年   22篇
  2014年   28篇
  2013年   54篇
  2012年   45篇
  2011年   51篇
  2010年   57篇
  2009年   80篇
  2008年   76篇
  2007年   69篇
  2006年   77篇
  2005年   51篇
  2004年   66篇
  2003年   43篇
  2002年   25篇
  2001年   25篇
  2000年   12篇
  1999年   16篇
  1998年   13篇
  1997年   8篇
  1996年   14篇
  1995年   5篇
  1994年   14篇
  1993年   4篇
  1992年   8篇
  1991年   5篇
  1990年   4篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
  1982年   2篇
  1981年   1篇
  1979年   1篇
  1976年   1篇
  1973年   1篇
  1971年   1篇
排序方式: 共有1090条查询结果,搜索用时 15 毫秒
871.
利用太阳能将水转化为清洁可持续的化学燃料是一种很有前途的策略.光催化水分解制氢技术是有效解决能源可持续发展和环境保护问题的重要技术.CdS由于具有较窄的带隙(2.4 eV)和合适的能带位置而被认为是最有潜力的光催化水产氢催化剂之一.然而,CdS强光的腐蚀性和快速的电子空穴复合导致光催化剂活性低、稳定性差,严重阻碍了CdS光催化剂的广泛应用.为了有效提高光催化产氢活性及稳定性,人们对CdS光催化剂进行了大量改性研究.其中,合理巧妙地加载助催化剂和构造纳米结构CdS被认为是两种极为重要的改性策略,两种策略的有效耦合可以更有效地利用太阳能,实现清洁氢燃料的生成.一方面,各种形貌的CdS光催化剂均已被开发,例如纳米线、纳米棒、纳米片和量子点等.然而,由于制备工艺复杂,在以往的报道中很少有超薄2D CdS纳米片用于光催化产氢.另一方面,由于贵金属(Ag,Pt,Au)的稀缺性和高成本阻碍了其修饰光催化剂的实际应用,所以利用非贵金属助催化剂(MoSx,CuS,Ni3C,WS2,NiS,MXene,CoxP和MoP)修饰CdS提高光催化产氢活性近年来备受关注.对于地球丰富的2D层状助催化剂Cu7S4而言,具有优异的光电催化产氢活性和简单制备方法,但是在光催化产氢领域的应用上未引起足够重视.因此,本文充分利用超薄CdS纳米片以及Cu7S4纳米片各自的独特优势,构建了独特的2D-2D层状异质结,实现了高效协同光催化产氢.我们首先以乙酸镉和硫脲为原料通过一步水热法合成了超薄2D CdS纳米片,并用静电自组装方法制备了CdS/Cu7S4.在可见光下进行了产氢测试,实验结果证实了优化的2D CdS/2%Cu7S4层状异质结在含有Na2S·9H2O和Na2SO3的水溶液中光催化析氢活性最高(27.8 mmol g^-1 h^-1),是原始CdS纳米片(2.6 mmol g^-1 h^-1)的10.69倍.经过4次连续循环反应,CdS/Cu7S4二元复合体系展现出良好的稳定性.为深入探讨高效产氢机制,对纳米级CdS复合材料的光催化物化性能及载流子分离机制进行了表征.通过X射线衍射确定了CdS和CdS/Cu7S4的晶体结构.用高分辨电子显微镜和X射线光电子能谱证实合成了CdS催化剂和Cu7S4助催化剂的超薄纳米片结构且成功复合.用紫外-可见漫反射光谱法对制备的纯CdS和CdS/Cu7S4复合样品的光吸收特性进行了表征.结果表明,在CdS上负载Cu7S4以后,可以明显观察到样品对可见光的吸收能力明显增强.对CdS/Cu7S4进行XPS测试分析,进一步证明了样品中S、Cd和Cu的化学成分和状态.利用PL发射光谱研究了CdS/Cu7S4光催化剂的电荷载流子复合和转移行为.进一步对纯CdS和CdS/Cu7S4复合光催化剂的瞬态光电流响应(I-t曲线)进行了研究,确定了光生载体的分离效率.阻抗是深入研究电荷载流子迁移和界面转移的最有力技术,利用阻抗技术证实CdS/Cu7S4界面高效的载流子分离性能.极化曲线结果表明,加入Cu7S4可以降低CdS的产氢过电势,因此加速表面产氢动力学.由此可见,本文所构建的2D-2D CdS/Cu7S4二元层状异质结可以同时实现光生电子空穴对的快速分离、电子的转移和增加光生电子在表面利用效率,从而最大幅度地提高其光催化水分解产氢活性.本文所采用基于CdS纳米片的2D-2D界面耦合策略可以作为一种通用策略扩展到各种传统半导体纳米片的改性,从而极大地推进高效光催化产氢材料的持续进步.  相似文献   
872.
挥发性有机化合物(VOCs)是大气颗粒污染物(PM2.5)和臭氧污染的主要前体物,来源于工业活动(如溶剂使用过程)、汽车尾气以及植物排放等,具有毒性,对人类和自然生命产生危害.催化氧化技术是在催化剂表面,在较低的操作温度(200-450℃)下,将VOCs非均相催化氧化成CO2和H2O,是一种最为有效的分解VOCs的方法,具有副产物少,能耗低的优点.VOCs分解用催化剂主要分为贵金属和金属氧化物两大类.贵金属催化剂活性高,但价格昂贵.因此科研工作者一直在诸多方面调控过渡金属氧化物,例如制备方法、组分协同、结构缺陷等,期望获得高活性、低成本的催化剂.水滑石(LDHs)是一种层状双金属氢氧化物,由带正电荷的金属氢氧化物层板和层间阴离子组成,可以表示为[M1-x2+Mx3+(OH)2](An-)x/n·mH2O.鉴于LDHs特有的结构特点,层板元素可调、比...  相似文献   
873.
The reactions of UO3 and TeO3 with KCl, RbCl, or CsCl at 800 °C for 5 d yield single crystals of A2[(UO2)3(TeO3)2O2] (A=K (1), Rb (2), and Cs (3)). These compounds are isostructural with one another, and their structures consist of two-dimensional sheets arranged in a stair-like topology separated by alkali metal cations. These sheets are comprised of zigzagging uranium(VI) oxide chains bridged by corner-sharing trigonal pyramidal TeO32− anions. The chains are composed of dimeric, edge-sharing, pentagonal bipyramidal UO7 moieties joined by edge-sharing tetragonal bipyramidal UO6 units. The lone-pair of electrons from the TeO3 groups are oriented in opposite directions with respect to one another on each side of the sheets rendering each individual sheet non-polar. The alkali metal cations form contacts with nearby tellurite oxygen atoms as well as with oxygen atoms from the uranyl moieties. Crystallographic data (193 K, MoKα, ): 1, triclinic, space group , , , , α=101.852(1)°, β=102.974(1)°, γ=100.081(1)°, , Z=2, R(F)=2.70% for 98 parameters and 1697 reflections with I>2σ(I); 2, triclinic, space group , , , , α=105.590(2)°, β=101.760(2)°, γ=99.456(2)°, , Z=2, R(F)=2.36% for 98 parameters and 1817 reflections with I>2σ(I); 3, triclinic, space group , , , , α=109.301(1)°, β=100.573(1)°, γ=99.504(1)°, , Z=2, R(F)=2.61% for 98 parameters and 1965 reflections with I>2σ(I).  相似文献   
874.
通过共沉淀法制备了M(OH)2(M=Mn, Ni)前驱体, 并与LiOH混合, 合成了锂离子电池富锂正极材料Li[NixLi1/3-2x/3Mn2/3-x/3]O2, 采用XRD、SEM和充放电实验对其进行表征. 研究结果表明, Li, Ni, Mn原子在M层中呈有序分布, 形成超结构; 富锂正极材料由亚微米的一次粒子团聚组成1~3 μm颗粒; 在2.0~4.8 V电位范围内, 充放电电流密度为10 mA/g时, 富锂正极材料表现出很高的可逆比容量, 达到200~240 mA·h/g, 同时具有良好的循环可逆性能.  相似文献   
875.
曹永  矫庆泽  赵芸 《物理化学学报》2009,25(11):2380-2384
以MgO负载的Fe为催化剂、正己烷为碳源、乙二胺为氮源, 用催化化学气相沉积法合成了碳纳米管(CNTs)和氮掺杂碳纳米管(CNx). 通过还原焙烧的Mg/Fe水滑石(LDH)和Mg(NO3)2/Fe(NO3)3前驱体得到具有催化活性的Fe催化剂(Fe-LDH和Fe-Mg(NO3)2/Fe(NO3)3). 由这两种催化剂催化合成的CNTs都具有中空的管状结构. Fe-LDH催化合成的CNx具有明显的“竹节”状形貌, 而Fe-Mg(NO3)2/Fe(NO3)3催化合成的部分CNx的形貌与“竹节”状不同. 该CNx具有厚的管壁且在管壁的石墨层与层之间存在大量的空隙. Fe-LDH催化合成的CNx中氮摩尔分数为6.3%, 高于Fe-Mg(NO3)2/Fe(NO3)3催化合成CNx中的5.7%; 但后者具有更多的缺陷, 石墨化程度更加无序.  相似文献   
876.
在无有机模板剂的条件下, 以Na+离子为结构导向剂, 通过水热合成法制备了一种与利用1,3-丙二胺合成的Uio-14具有相同层结构的二维磷酸铝化合物Na4[Al4P4O18]·H2O(1), 通过单晶X射线衍射确定了其拓扑结构. 利用粉末X射线衍射、 扫描电子显微镜、 电感耦合等离子体( ICP)元素分析和热重分析等对其物理化学性质进行了表征. 结果表明, 化合物1属于单斜晶系, 空间群为P21/c, 晶胞参数a=1.00887(9) nm, b=0.86747(8) nm, c=0.97580(9) nm, V=0.77387(12) nm3, Z=2, 其阴离子层由铝氧三角双锥(AlO5)和磷氧四面体(PO4)构成, 层间通过Na+离子平衡电荷; 与Uio-14相比, 化合物1具有更高的热稳定性, 在400 ℃空气条件下煅烧后结构仍然保持完好. 对化合物1的质子电导性能测试结果表明, 相比于传统的分子筛类材料, 化合物1展现出优异的质子电导性能, 在55 ℃下质子电导率可达到1.19×10-3 S/cm.  相似文献   
877.
近年来,水滑石由于其独特的性质受到越来越多的关注.作为非均相固体催化剂,水滑石及其衍生物具有优良的催化性能,因此得到了广泛研究和应用.本文简述了水滑石的几种合成方法,重点介绍了水滑石类催化剂在催化制氢和生物炼制方面的应用,并预测了水滑石类材料在新材料合成及环境友好催化体系中的应用前景.  相似文献   
878.
聚丙烯/层状双氢氧化物纳米复合材料是近年来开发的新型聚合物基复合材料,具有与纯聚合物基体不同的结晶行为,而且表现出优异的机械力学性能、耐热性能、阻燃性能和耐紫外线功能等,有着广泛的应用前景。本文首先对层状双氢氧化物的结构、组成与制备方法进行简要介绍,然后重点阐述了聚丙烯/层状双氢氧化物纳米复合材料的制备、分散结构表征、结晶行为以及力学和热学等性能方面的研究进展,最后对其应用前景进行展望。  相似文献   
879.
近年来 ,MoO3因其特殊的嵌合性能以及在材料科学领域的应用前景而受到了广泛关 注 [1- 6].尤其因导电高分子嵌入 MoO3后材料性能的提高 ,而使得人们对聚合物 /MoO3纳米材料的研究保持高度的兴趣 [7- 10].然而 ,由于 MoO3不具备强氧化能力 ,使得这一材料的原位生成困难重重 [7].到目前为止 ,常见的做法仍是首先将 MoO3层"撑"开 ,再通过离子交换将聚合物嵌入其中 .聚合物 /MoO3的生成通常要经过若干步骤才能实现 .本文采用钼酸铵和四甲基对苯二胺(下称 TMPD)为原料 ,利用钼酸铵在强酸条件下水解生成 MoO3[12]和 TMPD易于氧化的特…  相似文献   
880.
A direct decarbonation route without obvious morphology damage was developed for large micrometer-scale layered double hydroxides(LDHs).First,we synthesized pure,hexagonal-shaped LDHs with lateral dimension of micrometer-size by the recently reported urea hydrolysis method.Then,using HNO3-NaNO3 mixed solution,the obtained LDH with carbonate anions in the interlayer(LDHCO3) was directly decarbonated to its nitrate form,LDHNO3,its morphology and particle size were still unchanged.Compared with the recently published two-step decarbonation method,the direct decarbonation reported herein is very convenient.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号