首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6723篇
  免费   817篇
  国内免费   146篇
化学   5337篇
晶体学   89篇
力学   193篇
综合类   2篇
数学   107篇
物理学   1958篇
  2023年   66篇
  2022年   141篇
  2021年   223篇
  2020年   352篇
  2019年   239篇
  2018年   165篇
  2017年   170篇
  2016年   293篇
  2015年   307篇
  2014年   338篇
  2013年   431篇
  2012年   394篇
  2011年   360篇
  2010年   270篇
  2009年   370篇
  2008年   398篇
  2007年   487篇
  2006年   357篇
  2005年   283篇
  2004年   221篇
  2003年   259篇
  2002年   201篇
  2001年   177篇
  2000年   141篇
  1999年   151篇
  1998年   155篇
  1997年   68篇
  1996年   74篇
  1995年   72篇
  1994年   47篇
  1993年   56篇
  1992年   46篇
  1991年   41篇
  1990年   37篇
  1989年   32篇
  1988年   32篇
  1987年   23篇
  1986年   30篇
  1985年   25篇
  1984年   23篇
  1983年   7篇
  1982年   12篇
  1981年   11篇
  1980年   19篇
  1979年   18篇
  1978年   14篇
  1977年   13篇
  1976年   10篇
  1974年   8篇
  1973年   6篇
排序方式: 共有7686条查询结果,搜索用时 437 毫秒
131.
A new computationally-assisted methodology (PiMM), which accounts for the effects of intermolecular interactions in the crystal, is applied to the complete assignment of the Raman and infrared vibrational spectra of room temperature forms of crystalline caffeine, theobromine, and theophylline. The vibrational shifts due to crystal packing interactions are evaluated from ab initio calculations for a set of suitable molecular pairs, using the B3LYP/6-31G* approach.The proposed methodology provides an answer to the current demand for a reliable assignment of the vibrational spectra of these methyl-xanthines, and clarifies several misleading assignments. The most relevant intermolecular interactions in each system and their effect on the vibrational spectra are considered and discussed. Based on these results, significant insights are obtained for the structure of caffeine in the anhydrous form (stable at room temperature), for which no X-ray structure has been reported. A possible structure based on C((8))--H...N((9)) and C((1,3))--H...O intermolecular interactions is suggested.  相似文献   
132.
The F3CCl?FH and F3CCl?FCH3 dimers, which feature the halogen–halogen contacts, are investigated at MP2/6–311++G(d,p) and MP2/aug–cc–pVDZ levels of approximation. The binding energies of these complexes are found to be comparable to those of the weak hydrogen bonds. In both complexes the Cl?F are found to be significantly shorter than the sum of the corresponding van der Waals radii. The C–Cl?F contacts are also found to exhibit certain deviation from linearity. However, the energy differences between linear and bent structures are very small and primarily accounted for by electrostatic interactions between remote parts of the dimer. This indicates a high conformational flexibility of the halogen–halogen contacts and may help to explain the diversity of structural features in crystals formed by halogen-containing molecules. In both dimers the halogen–halogen interaction leads to certain shortening of the C–Cl electron accepting bond. This is accompanied by a small increase of the C–Cl stretching frequency. Hence, the two investigated dimers can possibly be classified as the blue-shifting halogen–halogen contacts.  相似文献   
133.
The general characteristics that relate the length of the polymethine chain of symmetrical cyanine dyes to their spectral-luminescent properties depending on the electron-donor character of the heterocycles and the nature of the solvent are formulated. For various types of symmetrical cyanines, the Stokes shifts decrease with the elongation of the polymethine chain due to weakening of the vibronic interactions. The vinylene shifts of the band maxima are essentially constant and fall within the range 100 to 130 nm depending on the nature of the heterocycles and the solvent. When the polymethine chain elongates the fluorescence quantum yields first increase and then decrease. The greater the effective length of the heterocycle the stronger the decrease. The fluorescence decay occurring when the polymethine chain gets longer is associated with intensification of the internal conversion. For symmetrical cyanines, the changes in the shapes of the electronic bands (their width, asymmetry, excess, and fine structure) as the chain elongates are governed by the competing effects of the vibronic and intermolecular interactions. The former decrease as the chain lengthens, causing the narrowing of the absorption bands for the lower vinylogs. On the other hand, the latter increase as chain lengthens, which leads to broadening of the bands for the higher vinylogs. The higher the solvent nucleophilicity and the greater the deviation of the electron-donor ability of the heterocycle from the average value the greater the broadening. Any elongation of the polymethine chain of symmetrical cyanines causes only narrowing of the bands and an increase in the asymmetry, excess, and structuring in the fluorescence spectra, which, unlike the absorption spectra, is independent of the electron-donor character of the heterocycles and the nature of the solvent. These effects are caused by the fact that, in contrast to absorption, changes in the shape of emission bands with increasing chain length are governed predominantly by vibronic rather than by intermolecular interactions.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1227–1239, July, 1994.  相似文献   
134.
Summary We present a molecular theory of the energy distributions for the internal quantum states of a solute in a liquid or glassy solvent. We show that the energy distributions for different states are correlated in a way that depends on the solute-solvent interactions. We show how the theory can be modified easily to describe the transition-energy distributions for different pairs of states, which are of course related to inhomogeneously broadened absorption spectra. We also show that the distributions for different transitions are correlated, and describe how this correlation is measured by nonresonant fluorescence- and phosphorescence-line-narrowing and hole-burning experiments. The theory provides a microscopic framework within which to interpret different phenomenological models. For the case of a Lennard-Jones solute in a Lennard-Jones liquid solvent, we compare our theory to Monte Carlo simulation.  相似文献   
135.
The sidechain conformational potential energy hypersurfaces (PEHS) for the γL, βL, αL, and αD backbone conformations of N-acetyl- -aspartate-N′-methylamide were generated. Of the 81 possible conformers initially expected for the aspartate residue, only seven were found after geometric optimizations at the B3LYP/6-31G(d) level of theory. No stable conformers could be located in the δL, L, γD, δD, and D backbone conformations. The ‘adiabatic’ deprotonation energies for the endo and exo forms of N-acetyl- -aspartic acid-N′-methylamide were calculated by comparing their optimized relative energies against those found for the seven stable conformers of N-acetyl- -aspartate-N′-methylamide. Sidechain conformational PEHSs were also generated for the estimation of ‘vertical’ deprotonation energies for both endo and exo forms of N-acetyl- -aspartic acid-N′-methylamide. All backbone–sidechain (N–HO–C) and backbone–backbone (N–HO=C) hydrogen bond interactions were analyzed. A total of two backbone–backbone and four backbone–sidechain interactions were found for N-acetyl- -aspartate-N′-methylamide. The deprotonated sidechain of N-acetyl- -aspartate-N′-methylamide may allow the aspartyl residue to form strong hydrogen bond interactions (since it is negatively charged) which may be significant in such processes as protein–ligand recognition and ligand binding. As a primary example, the molecular geometry of the aspartyl residue may be important in peptide folding, such as that in the RGD tripeptide.  相似文献   
136.
Four novel organotin complexes of two types—[R2Sn(o‐SC6H4CO2)]6 (R=Me, 1 ?H2O; nBu, 2 ) and {[R2Sn(m‐CO2C6H4S)R2Sn(m‐SC6H4CO2)SnR2]O}2 (R=Me, 3 ; nBu, 4 )—have been prepared by treatment of o‐ or m‐mercaptobenzoic acid and the corresponding R2SnCl2 (R=Me, nBu) with sodium ethoxide in ethanol (95 %). All the complexes were characterized by elemental analysis, FT‐IR and NMR (1H, 13C, 119Sn) spectroscopy, TGA, and X‐ray crystallography diffraction analysis. The molecular structure analyses reveal that both 1 and 2 are hexanuclear macrocycles with hydrophobic “pseudo‐cage” structures, while 3 and 4 are hexanuclear macrocycles with double‐cavity structures. Furthermore, the supramolecular structure analyses show that looser and more intriguing supramolecular infrastructures were also found in complexes 1 – 4 , which exist either as one‐dimensional chains of rings or as two‐dimensional networks assembled from the organometallic subunits through intermolecular C? H???S weak hydrogen bonds (WHBs) and π–π interactions.  相似文献   
137.
A method is provided for the recognition of glycated molecules based on their binding affinities to boronate-carrying monolayers. The affinity interaction of flavin adenine dinucleotide (FAD) and horseradish peroxidase (HRP) with phenylboronic acid monolayers on gold was investigated by using voltammetric and microgravimetric methods. Conjugates of 3-aminophenylboronic acid and 3,3'-dithiodipropionic acid di(N-hydroxysuccinimide ester) or 11-mercaptoundecanoic acid were prepared and self-assembled on gold surfaces to generate monolayers. FAD is bound to this modified surface and recognized by a pair of redox peaks with a formal potential of -0.433 V in a 0.1 M phosphate buffer solution, pH 6.5. Upon addition of a sugar to the buffer, the bound FAD could be replaced, indicating that the binding is reversible. Voltammetric, mass measurements, and photometric activity assays show that the HRP can also be bound to the interface. This binding is reversible, and HRP can be replaced by sorbitol or removed in acidic solution. The effects of pH, incubation time, and concentration of H(2)O(2) were studied by comparing the catalytic reduction of H(2)O(2) in the presence of the electron-donor thionine. The catalytic current of the HRP-loaded electrode was proportional to HRP concentrations in the incubation solution in the range between 5 microg mL(-1) and 0.1 mg mL(-1) with a linear slope of 3.34 microA mL mg(-1) and a correlation coefficient of 0.9945.  相似文献   
138.
The cover picture shows how trimeric perfluoro‐ortho‐phenylene mercury (center), one of the simplest trifunctional Lewis acidic hosts, interacts with organic molecules to afford various adducts. The planarity of this trinuclear complex as well as its overall polarizability compounded with relativistic effects at mercury permits the occurrence of noncovalent interactions and accounts for the tendency of this compound to form cofacial dimers as observed in the structure of the acetone adduct (top left). With a triply coordinated acetone molecule, the structure of this adduct also substantiates the cooperative effects that arise from the proximity and accessibility of the mercury centers. The complexation of arenes, such as benzene (bottom left) and naphthalene (bottom right), also occurs and leads to the formation of binary stacks in which the arene establishes multiple linkages with the mercury centers of the trifunctional Lewis acids. In addition to displaying unusual coordination environment, the arene units present in those stacks exhibit remarkable phosphorescent properties. For more details, see the paper by F. P. Gabbaï, R. E. Taylor, and M. R. Haneline on p. 5188 ff.  相似文献   
139.
The self-assembly of open ditopic and tetratopic cavitand complexes has been investigated by using monofunctionalized cavitand ligands and suitable metal precursors. In the case of ditopic complexes, self-assembly protocols, leading exclusively to the formation of both thermodynamically stable cis-Pt square-planar complexes 8 and 9 and the kinetically inert fac-Re octahedral complex 14, have been elaborated. The use of cis-[Pt(CH3)CN)2Cl2] as metal precursor led to the formation of monotopic trans-10 and ditopic trans-11 cavitand complexes, while cis-[Pt(dmso)2Cl2] afforded both cis-13 and trans-11 isomers. The self-assembly of tetratopic cavitand complexes has been achieved by using mononuclear [Pd(CH3CN)4(BF4)2] and dinuclear [M2(tppb)(OTf)4] (19: M = Pt; 20: M = Pd) metal precursors. Only the tetratopic dinuclear complexes 21 and 22 were stable. The ligand configuration with two phosphorus and two cavitand ligands at the metal centers is the most appropriate to build tetratopic cavitand complexes with sufficient kinetic stability.  相似文献   
140.
Absorption spectra of eight 3-substituted-5,5-diphenylhydantoins have been recorded in fourteen solvents in the range 200–400 nm. The effect of solvent dipolarity/polarizability and solvent/solute hydrogen bonding interactions are analyzed by means of the linear solvation energy relationship (LSER) concept proposed by Kamlet and Taft. The lipophilic activity of the investigated hydantoins was estimated by the calculation of log 10 P values with the Advanced Chemistry Development Software. The calculated values of log 10 P were correlated with the ratio of the contributions of specific solvent interactions, and, by employing the linear dependence thus obtained, the pharmacological activity of the studied hydantoin derivatives is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号