全文获取类型
收费全文 | 12218篇 |
免费 | 1876篇 |
国内免费 | 1339篇 |
专业分类
化学 | 5600篇 |
晶体学 | 77篇 |
力学 | 2244篇 |
综合类 | 62篇 |
数学 | 1439篇 |
物理学 | 6011篇 |
出版年
2024年 | 38篇 |
2023年 | 173篇 |
2022年 | 548篇 |
2021年 | 521篇 |
2020年 | 537篇 |
2019年 | 506篇 |
2018年 | 397篇 |
2017年 | 426篇 |
2016年 | 615篇 |
2015年 | 512篇 |
2014年 | 664篇 |
2013年 | 1157篇 |
2012年 | 688篇 |
2011年 | 736篇 |
2010年 | 649篇 |
2009年 | 773篇 |
2008年 | 798篇 |
2007年 | 818篇 |
2006年 | 712篇 |
2005年 | 551篇 |
2004年 | 424篇 |
2003年 | 401篇 |
2002年 | 375篇 |
2001年 | 320篇 |
2000年 | 311篇 |
1999年 | 272篇 |
1998年 | 268篇 |
1997年 | 181篇 |
1996年 | 158篇 |
1995年 | 133篇 |
1994年 | 141篇 |
1993年 | 103篇 |
1992年 | 77篇 |
1991年 | 66篇 |
1990年 | 54篇 |
1989年 | 48篇 |
1988年 | 39篇 |
1987年 | 44篇 |
1986年 | 26篇 |
1985年 | 29篇 |
1984年 | 24篇 |
1983年 | 17篇 |
1982年 | 25篇 |
1981年 | 8篇 |
1980年 | 6篇 |
1979年 | 14篇 |
1978年 | 9篇 |
1976年 | 9篇 |
1971年 | 6篇 |
1957年 | 11篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
You-Gang Zhang Xia-Xia Liu Jian-Cheng Zong Yang-Teng-Jiao Zhang Rong Dong Na Wang Zhi-Hui Ma Li Li Shang-Long Wang Yan-Ling Mu Song-Song Wang Zi-Min Liu Li-Wen Han 《Molecules (Basel, Switzerland)》2022,27(13)
Phytotherapy offers obvious advantages in the intervention of Coronary Artery Disease (CAD), but it is difficult to clarify the working mechanisms of the medicinal materials it uses. DGS is a natural vasoprotective combination that was screened out in our previous research, yet its potential components and mechanisms are unknown. Therefore, in this study, HPLC-MS and network pharmacology were employed to identify the active components and key signaling pathways of DGS. Transgenic zebrafish and HUVECs cell assays were used to evaluate the effectiveness of DGS. A total of 37 potentially active compounds were identified that interacted with 112 potential targets of CAD. Furthermore, PI3K-Akt, MAPK, relaxin, VEGF, and other signal pathways were determined to be the most promising DGS-mediated pathways. NO kit, ELISA, and Western blot results showed that DGS significantly promoted NO and VEGFA secretion via the upregulation of VEGFR2 expression and the phosphorylation of Akt, Erk1/2, and eNOS to cause angiogenesis and vasodilation. The result of dynamics molecular docking indicated that Salvianolic acid C may be a key active component of DGS in the treatment of CAD. In conclusion, this study has shed light on the network molecular mechanism of DGS for the intervention of CAD using a network pharmacology-driven strategy for the first time to aid in the intervention of CAD. 相似文献
32.
Mingfei Ji Zongtao Chai Jie Chen Gang Li Qiang Li Miao Li Yelei Ding Shaoyong Lu Guanqun Ju Jianquan Hou 《Molecules (Basel, Switzerland)》2022,27(13)
Small ubiquitin-related modifier (SUMO)-specific protease 1 (SENP1) is a cysteine protease that catalyzes the cleavage of the C-terminus of SUMO1 for the processing of SUMO precursors and deSUMOylation of target proteins. SENP1 is considered to be a promising target for the treatment of hepatocellular carcinoma (HCC) and prostate cancer. SENP1 Gln597 is located at the unstructured loop connecting the helices α4 to α5. The Q597A mutation of SENP1 allosterically disrupts the hydrolytic reaction of SUMO1 through an unknown mechanism. Here, extensive multiple replicates of microsecond molecular dynamics (MD) simulations, coupled with principal component analysis, dynamic cross-correlation analysis, community network analysis, and binding free energy calculations, were performed to elucidate the detailed mechanism. Our MD simulations showed that the Q597A mutation induced marked dynamic conformational changes in SENP1, especially in the unstructured loop connecting the helices α4 to α5 which the mutation site occupies. Moreover, the Q597A mutation caused conformational changes to catalytic Cys603 and His533 at the active site, which might impair the catalytic activity of SENP1 in processing SUMO1. Moreover, binding free energy calculations revealed that the Q597A mutation had a minor effect on the binding affinity of SUMO1 to SENP1. Together, these results may broaden our understanding of the allosteric modulation of the SENP1−SUMO1 complex. 相似文献
33.
Lin Li Hongliang Wang Jun Ye Yankun Chen Renyun Wang Dujia Jin Yuling Liu 《Molecules (Basel, Switzerland)》2022,27(14)
Surface charge polarity and density influence the immune clearance and cellular uptake of intravenously administered lipid nanoparticles (LNPs), thus determining the efficiency of their delivery to the target. Here, we modified the surface charge with ascorbyl palmitate (AsP) used as a negatively charged lipid. AsP-PC-LNPs were prepared by dispersion and ultrasonication of AsP and phosphatidylcholine (PC) composite films at various ratios. AsP inserted into the PC film with its polar head outward. The pKa for AsP was 4.34, and its ion form conferred the LNPs with negative surface charge. Zeta potentials were correlated with the amount and distribution of AsP on the LNPs surface. DSC, Raman and FTIR spectra, and molecular dynamics simulations disclosed that AsP distributed homogeneously in PC at 1–8% (w/w), and there were strong hydrogen bonds between the polar heads of AsP and PC (PO2−), which favored LNPs’ stability. But at AsP:PC > 8% (w/w), the excessive AsP changed the interaction modes between AsP and PC. The AsP–PC composite films became inhomogeneous, and their phase transition behaviors and Raman and FTIR spectra were altered. Our results clarified the mechanism of surface charge modification by AsP and provided a rational use of AsP as a charged lipid to modify LNP surface properties in targeted drug delivery systems. Furthermore, AsP–PC composites were used as phospholipid-based biological membranes to prepare paclitaxel-loaded LNPs, which had stable surface negative charge, better tumor targeting and tumor inhibitory effects. 相似文献
34.
新型含氮螯合树脂的制备及其吸附性能 总被引:1,自引:0,他引:1
以三甘醇和苯磺酰氯为原料,二乙烯三胺为交联剂合成了新型含氮螯合树脂(5),其结构经IR表征.讨论了Ni2 浓度和pH对5吸附容量的影响.动力学研究表明,5对Ni2 的吸附速率符合鲛岛公式. 相似文献
35.
Asaad Khalid Mohnad Abdalla Maria Saeed Muhammad Nabeel Ghayur Surya Kant Kalauni Mohammed Albratty Hassan A. Alhazmi Mohammed Ahmed Mesaik Anwarul Hassan Gilani Zaheer Ul-Haq 《Molecules (Basel, Switzerland)》2022,27(11)
Acetylcholinesterase (AChE) inhibitors and calcium channel blockers are considered effective therapies for Alzheimer’s disease. AChE plays an essential role in the nervous system by catalyzing the hydrolysis of the neurotransmitter acetylcholine. In this study, the inhibition of the enzyme AChE by Sarcorucinine-D, a pregnane type steroidal alkaloid, was investigated with experimental enzyme kinetics and molecular dynamics (MD) simulation techniques. Kinetics studies showed that Sarcorucinine-D inhibits two cholinesterases—AChE and butyrylcholinesterase (BChE)—noncompetitively, with Ki values of 103.3 and 4.66 µM, respectively. In silico ligand-protein docking and MD simulation studies conducted on AChE predicted that Sarcorucinine-D interacted via hydrophobic interactions and hydrogen bonds with the residues of the active-site gorge of AChE. Sarcorucinine-D was able to relax contractility concentration-dependently in the intestinal smooth muscles of jejunum obtained from rabbits. Not only was the spontaneous spasmogenicity inhibited, but it also suppressed K+-mediated spasmogenicity, indicating an effect via the inhibition of voltage-dependent Ca2+ channels. Sarcorucinine-D could be considered a potential lead molecule based on its properties as a noncompetitive AChE inhibitor and a Ca2+ channel blocker. 相似文献
36.
Wei Zhu Fengming Wu Jindie Hu Wenjing Wang Jifeng Zhang Guoqing Guo 《Molecules (Basel, Switzerland)》2022,27(11)
Chlorogenic acid (CGA), an important metabolite in natural plant medicines such as honeysuckle and eucommia, has been shown to have potent antinociceptive effects. Nevertheless, the mechanism by which CGA relieves chronic pain remains unclear. α-amino-3-hydroxy-5-methyl-4-isooxazolpropionic acid receptor (AMPAR) is a major ionotropic glutamate receptor that mediates rapid excitatory synaptic transmission and its glutamate ionotropic receptor AMPA type subunit 1 (GluA1) plays a key role in nociceptive transmission. In this study, we used Western blot, surface plasmon resonance (SPR) assay, and the molecular simulation technologies to investigate the mechanism of interaction between CGA and AMPAR to relieve chronic pain. Our results indicate that the protein expression level of GluA1 showed a dependent decrease as the concentration of CGA increased (0, 50, 100, and 200 μM). The SPR assay demonstrates that CGA can directly bind to GluA1 (KD = 496 μM). Furthermore, CGA forms a stable binding interaction with GluA1, which is validated by molecular dynamics (MD) simulation. The binding free energy between CGA and GluA1 is −39.803 ± 14.772 kJ/mol, where van der Waals interaction and electrostatic interaction are the major contributors to the GluA1–CGA binding, and the key residues are identified (Val-32, Glu-33, Ala-36, Glu-37, Leu-48), which play a crucial role in the binding interaction. This study first reveals the structural basis of the stable interaction between CGA and GluA1 to form a binding complex for the relief of chronic pain. The research provides the structural basis to understand the treatment of chronic pain and is valuable to the design of novel drug molecules in the future. 相似文献
37.
Physically unacceptable chaotic numerical solutions of nonlinear circuits and systems are discussed in this paper. First, as an introduction, a simple example of a wrong choice of a numerical solver to deal with a second-order linear ordinary differential equation is presented. Then, the main result follows with the analysis of an ill-designed numerical approach to solve and analyze a particular nonlinear memristive circuit. The obtained trajectory of the numerical solution is unphysical (not acceptable), as it violates the presence of an invariant plane in the continuous systems. Such a poor outcome is then turned around, as we look at the unphysical numerical solution as a source of strong chaotic sequences. The 0–1 test for chaos and bifurcation diagrams are applied to prove that the unacceptable (from the continuous system point of view) numerical solutions are, in fact, useful chaotic sequences with possible applications in cryptography and the secure transmission of data. 相似文献
38.
Eugeny Nikolaevich Zapolotsky Sergey Pavlovich Babailov Gennadiy Alexandrovich Kostin 《Molecules (Basel, Switzerland)》2022,27(14)
1H NMR measurements are reported for the CD2Cl2/CDCl3 solutions of the Co(II) calix[4]arenetetraphosphineoxide complex (I). Temperature dependences of the 1H NMR spectra of I have been analyzed using the line shape analysis, taking into account the temperature variation of paramagnetic chemical shifts, within the frame of the dynamic NMR method. Conformational dynamics of the 2:1 Co(II) calix[4]arene complexes was conditioned by the pinched cone ↔pinched cone interconversion of I (with activation Gibbs energy ΔG≠(298K) = 40 ± 3 kJ/mol. Due to substantial temperature dependence of paramagnetic shifts, complex I can be used as model compound for designing an NMR thermosensor reagent for local temperature monitoring. 相似文献
39.
Influenza virus infections continue to be a significant and recurrent public health problem. Although vaccine efficacy varies, regular immunisation is the most effective method for suppressing the influenza virus. Antiviral drugs are available for influenza, although two of the four FDA-approved antiviral treatments have resulted in significant drug resistance. Therefore, new treatments are being sought to reduce the burden of flu-related illness. The time-consuming development of treatments for new and re-emerging diseases such as influenza and the high failure rate are increasing concerns. In this context, we used an in silico-based drug repurposing method to repurpose FDA-approved drugs as potential therapies against the H7N9 virus. To find potential inhibitors, a total of 2568 drugs were screened. Promacta, tucatinib, and lurasidone were identified as promising hits in the DrugBank database. According to the calculations of MM-GBSA, tucatinib (−54.11 kcal/mol) and Promacta (−56.20 kcal/mol) occupied the active site of neuraminidase with a higher binding affinity than the standard drug peramivir (−49.09 kcal/mol). Molecular dynamics (MD) simulation studies showed that the C-α atom backbones of the complexes of tucatinib and Promacta neuraminidase were stable throughout the simulation period. According to ADME analysis, the hit compounds have a high gastrointestinal absorption (GI) and do not exhibit properties that allow them to cross the blood–brain barrier (BBB). According to the in silico toxicity prediction, Promacta is not cardiotoxic, while lurasidone and tucatinib show only weak inhibition. Therefore, we propose to test these compounds experimentally against the influenza H7N9 virus. The investigation and validation of these potential H7N9 inhibitors would be beneficial in order to bring these compounds into clinical settings. 相似文献
40.
Yue Jia Tingji Yao Guangcai Ma Qi Xu Xianglong Zhao Hui Ding Xiaoxuan Wei Haiying Yu Zhiguo Wang 《Molecules (Basel, Switzerland)》2022,27(9)
Biotransformation of organophosphorus flame retardants (OPFRs) mediated by cytochrome P450 enzymes (CYPs) has a potential correlation with their toxicological effects on humans. In this work, we employed five typical OPFRs including tris(1,3-dichloro-2-propyl) phosphate (TDCIPP), tris(1-chloro-2-propyl) phosphate (TCIPP), tri(2-chloroethyl) phosphate (TCEP), triethyl phosphate (TEP), and 2-ethylhexyl diphenyl phosphate (EHDPHP), and performed density functional theory (DFT) calculations to clarify the CYP-catalyzed biotransformation of five OPFRs to their diester metabolites. The DFT results show that the reaction mechanism consists of Cα-hydroxylation and O-dealkylation steps, and the biotransformation activities of five OPFRs may follow the order of TCEP ≈ TEP ≈ EHDPHP > TCIPP > TDCIPP. We further performed molecular dynamics (MD) simulations to unravel the binding interactions of five OPFRs in the CYP3A4 isoform. Binding mode analyses demonstrate that CYP3A4-mediated metabolism of TDCIPP, TCIPP, TCEP, and TEP can produce the diester metabolites, while EHDPHP metabolism may generate para-hydroxyEHDPHP as the primary metabolite. Moreover, the EHDPHP and TDCIPP have higher binding potential to CYP3A4 than TCIPP, TCEP, and TEP. This work reports the biotransformation profiles and binding features of five OPFRs in CYP, which can provide meaningful clues for the further studies of the metabolic fates of OPFRs and toxicological effects associated with the relevant metabolites. 相似文献