首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1245篇
  免费   69篇
  国内免费   91篇
化学   62篇
力学   275篇
综合类   6篇
数学   794篇
物理学   268篇
  2024年   4篇
  2023年   14篇
  2022年   7篇
  2021年   14篇
  2020年   19篇
  2019年   36篇
  2018年   27篇
  2017年   27篇
  2016年   28篇
  2015年   36篇
  2014年   60篇
  2013年   112篇
  2012年   39篇
  2011年   100篇
  2010年   87篇
  2009年   93篇
  2008年   84篇
  2007年   65篇
  2006年   67篇
  2005年   67篇
  2004年   48篇
  2003年   61篇
  2002年   48篇
  2001年   35篇
  2000年   33篇
  1999年   35篇
  1998年   37篇
  1997年   27篇
  1996年   22篇
  1995年   12篇
  1994年   12篇
  1993年   5篇
  1992年   6篇
  1991年   6篇
  1990年   4篇
  1989年   2篇
  1988年   6篇
  1986年   1篇
  1985年   7篇
  1984年   2篇
  1982年   1篇
  1981年   1篇
  1980年   4篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
排序方式: 共有1405条查询结果,搜索用时 31 毫秒
191.
This paper considers a non-linear system of ordinary differential equations, which arises in the study of hantavirus epidemics. The system has the property that the total population obeys the logistic equation. For this system, we use linearization and the dynamical properties of the logistic equation to analyze the dynamics of the subpopulation system. In view of the usual numerical instabilities associated with standard finite difference methods used for simulating such systems, we construct non-standard finite difference (NSFD) schemes, which preserve the dynamic properties of the system, and may therefore be used for its simulation.  相似文献   
192.
Approximate analytical bound-state solutions of the Dirac particle in the fields of attractive and repulsive Rosen- Morse (RM) potentials including the Coulomb-like tensor (CLT) potential are obtained for arbitrary spin-orbit quantum number κ. The Pekeris approximation is used to deal with the spin-orbit coupling terms κ(κ± 1)r 2 . In the presence of exact spin and pseudospin (p-spin) symmetries, the energy eigenvalues and the corresponding normalized two-component wave functions are found by using the parametric generalization of the Nikiforov-Uvarov (NU) method. The numerical results show that the CLT interaction removes degeneracies between the spin and p-spin state doublets.  相似文献   
193.
In this paper, we present two higher-order compact finite difference schemes for solving one-dimensional (1D) heat conduction equations with Dirichlet and Neumann boundary conditions, respectively. In particular, we delicately adjust the location of the interior grid point that is next to the boundary so that the Dirichlet or Neumann boundary condition can be applied directly without discretization, and at the same time, the fifth or sixth-order compact finite difference approximations at the grid point can be obtained. On the other hand, an eighth-order compact finite difference approximation is employed for the spatial derivative at other interior grid points. Combined with the Crank–Nicholson finite difference method and Richardson extrapolation, the overall scheme can be unconditionally stable and provides much more accurate numerical solutions. Numerical errors and convergence rates of these two schemes are tested by two examples.  相似文献   
194.
EQ rot 1 nonconforming finite element approximation to a class of nonlinear dual phase lagging heat conduction equations is discussed for semi-discrete and fully-discrete schemes. By use of a special property, that is, the consistency error of this element is of order O(h2 ) one order higher than its interpolation error O(h), the superclose results of order O(h2 ) in broken H1 -norm are obtained. At the same time, the global superconvergence in broken H1 -norm is deduced by interpolation postprocessing technique. Moreover, the extrapolation result with order O(h4 ) is derived by constructing a new interpolation postprocessing operator and extrapolation scheme based on the known asymptotic expansion formulas of EQ rot 1 element. Finally, optimal error estimate is gained for a proposed fully-discrete scheme by different approaches from the previous literature.  相似文献   
195.
The inherent complexity of the radiative transfer equation makes the exact treatment of radiative heat transfer impossible even for idealized situations and simple boundary conditions. Therefore, a wide variety of efficient solution methods have been developed for the RTE. Among these solution methods the spherical harmonics method, the moment method, and the discrete ordinates method provide means to obtain higher-order approximate solutions to the equation of radiative transfer. Although the assembly of the governing equations for the spherical harmonics method requires tedious algebra, their final form promises great accuracy for any given order, since it is a spectral method (rather than finite difference/finite volume in the case of discrete ordinates). In this study, a new methodology outlined in a previous paper on the spherical harmonics method (PN) is further developed. The new methodology employs successive elimination of spherical harmonic tensors, thus reducing the number of first-order partial differential equations needed to be solved simultaneously by previous PN approximations (=(N+1)2). The result is a relatively small set (=N(N+1)/2) of second-order, elliptic partial differential equations, which can be solved with standard PDE solution packages. General boundary conditions and supplementary conditions using rotation of spherical harmonics in terms of local coordinates are formulated for the general PN approximation for arbitrary three-dimensional geometries. Accuracy of the PN approximation can be further improved by applying the “modified differential approximation” approach first developed for the P1-approximation. Numerical computations are carried out with the P3 approximation for several new two-dimensional problems with emitting, absorbing, and scattering media. Results are compared to Monte Carlo solutions and discrete ordinates simulations and a discussion of ray effects and false scattering is provided.  相似文献   
196.
A comparison of discretization schemes required to evaluate the radiation intensity at the cell faces of a control volume in differential solution methods of the radiative transfer equation is presented. Several schemes developed using the normalized variable diagram and the total variation diminishing formalisms are compared along with essentially non-oscillatory schemes and genuinely multidimensional schemes. The calculations were carried out using the discrete ordinates method, but the analysis is equally valid for the finite-volume method. It is shown that the S schemes of the genuinely multidimensional family perform quite well, particularly in problems with discontinuous radiation intensity fields. However, they are time consuming, and so they do not always become more attractive regarding the trade-off between accuracy and computational requirements, in comparison with other high-order schemes that, although being less accurate, are also more economical.  相似文献   
197.
Transpiration cooling using ceramic matrix composite materials is an innovative concept for cooling rocket thrust chambers. The coolant (air) is driven through the porous material by a pressure difference between the coolant reservoir and the turbulent hot gas flow. The effectiveness of such cooling strategies relies on a proper choice of the involved process parameters such as injection pressure, blowing ratios, and material structure parameters, to name only a few. In view of the limited experimental access to the subtle processes occurring at the interface between hot gas flow and porous medium, reliable and accurate simulations become an increasingly important design tool. In order to facilitate such numerical simulations for a carbon/carbon material mounted in the side wall of a hot gas channel that are able to capture a spatially varying interplay between the hot gas flow and the coolant at the interface, we formulate a model for the porous medium flow of Darcy–Forchheimer type. A finite‐element solver for the corresponding porous medium flow is presented and coupled with a finite‐volume solver for the compressible Reynolds‐averaged Navier–Stokes equations. The two‐dimensional and three‐dimensional results at Mach number Ma = 0.5 and hot gas temperature THG=540 K for different blowing ratios are compared with experimental data. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
198.
In this paper, we present a class of high‐order accurate cell‐centered arbitrary Lagrangian–Eulerian (ALE) one‐step ADER weighted essentially non‐oscillatory (WENO) finite volume schemes for the solution of nonlinear hyperbolic conservation laws on two‐dimensional unstructured triangular meshes. High order of accuracy in space is achieved by a WENO reconstruction algorithm, while a local space–time Galerkin predictor allows the schemes to be high order accurate also in time by using an element‐local weak formulation of the governing PDE on moving meshes. The mesh motion can be computed by choosing among three different node solvers, which are for the first time compared with each other in this article: the node velocity may be obtained either (i) as an arithmetic average among the states surrounding the node, as suggested by Cheng and Shu, or (ii) as a solution of multiple one‐dimensional half‐Riemann problems around a vertex, as suggested by Maire, or (iii) by solving approximately a multidimensional Riemann problem around each vertex of the mesh using the genuinely multidimensional Harten–Lax–van Leer Riemann solver recently proposed by Balsara et al. Once the vertex velocity and thus the new node location have been determined by the node solver, the local mesh motion is then constructed by straight edges connecting the vertex positions at the old time level tn with the new ones at the next time level tn + 1. If necessary, a rezoning step can be introduced here to overcome mesh tangling or highly deformed elements. The final ALE finite volume scheme is based directly on a space–time conservation formulation of the governing PDE system, which therefore makes an additional remapping stage unnecessary, as the ALE fluxes already properly take into account the rezoned geometry. In this sense, our scheme falls into the category of direct ALE methods. Furthermore, the geometric conservation law is satisfied by the scheme by construction. We apply the high‐order algorithm presented in this paper to the Euler equations of compressible gas dynamics as well as to the ideal classical and relativistic magnetohydrodynamic equations. We show numerical convergence results up to fifth order of accuracy in space and time together with some classical numerical test problems for each hyperbolic system under consideration. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
199.
Let be a sequence of interpolation schemes in of degree (i.e. for each one has unique interpolation by a polynomial of total degree and total order . Suppose that the points of tend to as and the Lagrange-Hermite interpolants, , satisfy for all monomials with . Theorem: for all functions of class in a neighborhood of . (Here denotes the Taylor series of at 0 to order .) Specific examples are given to show the optimality of this result.

  相似文献   

200.
Within the fragment resolution of molecular systems the conceptual and interpretative advantages of using the separate eigenvalue problems for the internal and external part of the Hermitian matrix representing a physical quantity in quantum mechanics are examined. By definition, these two parts accordingly combine only the diagonal and off-diagonal subsystem-resolved blocks of matrix elements. These two partial eigenvalue problems bring about the matrix internal or external decouplings, respectively, which have recently been used in several interpretations of the molecular electronic structure. A character and structure of the external eigensolutions is examined in some detail and their recent applications in the Charge Sensitivity Analysis—to extract the most important electron-transfer effects between constituent atoms of model chemisorption systems, and in the Molecular-Orbital theory—to precisely identify the inter-orbital flows of electrons, are summarized and commented upon. The grouping relation, for combining the external/internal eigensolutions into those for the whole matrix, is derived in the context of the complementary “rotations” of the basis set vectors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号