首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12556篇
  免费   1300篇
  国内免费   1428篇
化学   9580篇
晶体学   168篇
力学   1214篇
综合类   59篇
数学   352篇
物理学   3911篇
  2024年   29篇
  2023年   150篇
  2022年   278篇
  2021年   275篇
  2020年   431篇
  2019年   375篇
  2018年   330篇
  2017年   474篇
  2016年   595篇
  2015年   604篇
  2014年   651篇
  2013年   1128篇
  2012年   757篇
  2011年   878篇
  2010年   663篇
  2009年   776篇
  2008年   679篇
  2007年   864篇
  2006年   799篇
  2005年   657篇
  2004年   613篇
  2003年   572篇
  2002年   413篇
  2001年   300篇
  2000年   331篇
  1999年   243篇
  1998年   187篇
  1997年   202篇
  1996年   178篇
  1995年   127篇
  1994年   141篇
  1993年   72篇
  1992年   83篇
  1991年   58篇
  1990年   59篇
  1989年   67篇
  1988年   65篇
  1987年   39篇
  1986年   20篇
  1985年   18篇
  1984年   23篇
  1983年   12篇
  1982年   16篇
  1981年   10篇
  1980年   16篇
  1979年   11篇
  1976年   3篇
  1973年   2篇
  1972年   2篇
  1971年   3篇
排序方式: 共有10000条查询结果,搜索用时 16 毫秒
991.
The aim of this work was to evaluate the use of a molecularly imprinted polymer as a selective solid‐phase extraction sorbent for the clean‐up and pre‐concentration of patulin from apple‐based food products. Ultra high pressure liquid chromatography coupled to ultraviolet absorbance detection was used for the analysis of patulin. The molecularly imprinted polymer was applied, for the first time, to the determination of patulin in apple juice, puree and jam samples spiked within the maximum levels specified by the European Commission No. 1881/2006. High recoveries (>77%) were obtained. The method was validated and found to be linear in the range 2–100 μg/kg with correlation coefficients greater than 0.965 and repeatability relative standard deviation below 11% in all cases. Compared with dispersive solid‐phase extraction (QuEChERS method) and octadecyl sorbent, the molecularly imprinted polymer showed higher recoveries and selectivity for patulin. The application of Affinisep molecularly imprinted polymer as a selective sorbent material for detection of patulin fulfilled the method performance criteria required by the Commission Regulation No. 401/2006, demonstrating the suitability of the technique for the control of patulin at low ppb levels in different apple‐based foods such as juice, puree and jam samples.  相似文献   
992.
A new multiple monolithic fiber solid‐phase microextraction using a polydopamine‐based monolith as the extraction medium is proposed. The monolith was synthesized by facile in situ copolymerization of N‐methacryldopamine and dual cross‐linkers (divinylbenzene/ethylenedimethacrylate) in the presence of N ,N‐dimethylformamide. The effect of the contents of N‐methacryldopamine and porogen in the polymerization mixture on the extraction performance was investigated thoroughly. A series of characterization studies was performed to validate the structure and properties of the monolith. The prepared multiple monolithic fibers were used for the extraction of triazine herbicides in environmental water samples. After the optimization of the extraction parameters, a convenient, sensitive, cost‐effective, and environmentally friendly method for the determination of trace triazine herbicides in water samples was developed by coupling multiple monolithic fibers solid‐phase microextraction with high‐performance liquid chromatography and diode array detection. The results indicated that the limits of detection and quantification for the target compounds were 0.031–0.14 and 0.10–0.45 μg/L, respectively. Good precision and reproducibility were obtained with the relative standard deviations below 10%. The developed method was applied to the analysis of the triazine herbicides in different water samples (lake, river, and farmland waters). The recoveries of the method were in the range between 79.6 and 117%.  相似文献   
993.
As a novel solid‐phase extraction material, zinc sulfide nanosheets were prepared by a simple method and were used to extract flavonoids. We used scanning electron microscopy to show its nanosheet morphology and energy dispersive X‐ray spectroscopy and powder X‐ray diffraction to confirm its chemical and phase compositions. Coupled to a high‐performance liquid chromatography, the zinc sulfide nanosheets were packed into a microcolumn and were used to extract four model flavonoids to examine their extraction ability. The parameters of sample loading and elution were investigated. Under optimized conditions, the analytical method for flavonoids was established. For the method, wide linearities from 1 to 250 μg/L and low limits of detection from 0.25 to 0.5 μg/L were obtained. The relative standard deviations for single column repeatability and column to column reproducibility were less than 7.7 and 10.4%, respectively. The established method was also used to analyze two real samples and the recoveries from 88.7 to 98.2% further proved the reliability of the method. Moreover, the zinc sulfide nanosheets have good stability and that in one column can be reused for more than 50 times. This work proves that the prepared zinc sulfide nanosheets are a good candidate as the flavonoids sorbent.  相似文献   
994.
Microcystins (MCs), produced by freshwater cyanobacteria, can be serious water pollutants, so it is important to monitor their concentration in drinking water. We have developed a method for rapid and accurate determination of microcystin levels in environmental water, using magnetic solid‐phase extraction and high‐performance liquid chromatography with UV detection. The magnetic composite material, which was combined with cetylpyridinium chloride, was prepared by hydrothermal synthesis. The optimal extraction of microcystins in water sample was achieved by optimizing the amount of adsorbent, time of adsorption, ratio of eluting solvent, and volume of eluent. Under the optimal conditions, the limit of detection of MC‐LR was 0.001 μg/L, and the limit of quantification was 0.0028 μg/L. The limit of detection of MC‐RR was 0.001 μg/L, and the limit of quantification was 0.003 μg/L. These values are far lower than those established by the International Health Organization for the maximum concentration of microcystins in drinking water. The magnetic solid‐phase extraction adsorbent used in this method has the advantages of simple preparation, low price, and easy solid–liquid separation, and it can be used for the rapid and sensitive monitoring of trace microcystins in environmental water samples.  相似文献   
995.
We utilized ultra‐high performance liquid chromatography with tandem mass spectrometry and dispersive solid‐phase extraction to develop a new method for the detection of nine analytes (scopolamine, cephaeline, strychnine, hyoscyamine, brucine, hydrastine, ajmalicine, colchicine, and oleandrin) in herbal cosmetics. Acetonitrile/water and 2‐propylaminoethylamine were used to disperse and purify during the dispersive solid‐phase extraction step. The analytes were separated by a Waters UPLC HSS T3 column and detected through electrospray ionization source in the positive mode with multi‐reaction monitoring conditions. Under the optimal conditions, the calibration curves were linear in the range of 0.2–100.0 μg/L with the correlation coefficients higher than 0.995. The method limit of quantitation (S/N = 10) were 5.0 μg/kg for oleandrin and 1.0 μg/kg for the other eight alkaloids. The mean recoveries at three spiked concentration levels of 1.0–10.0 μg/kg were in the range of 86.9–116.5% with the intra‐day relative standard deviations (n  = 6) ranging from 2.4 to 8.8%, and inter‐day relative standard deviations ranging from 2.7 to 5.7%. This method is accurate, simple and rapid, and has been applied to the quality supervision of herbal cosmetics in Guangzhou.  相似文献   
996.
A green and novel deep eutectic solvent modified graphene was prepared and used as a neutral adsorbent for the rapid determination of sulfamerazine in a river water sample by pipette‐tip solid‐phase extraction. Compared with conventional graphene, deep eutectic solvent modified graphene can change the surface of graphene with wrinkled structure and higher selective extraction ability. The properties of deep eutectic solvent modified graphene and graphene were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis. Static adsorption showed deep eutectic solvent modified graphene had a higher adsorption ability (18.62 mg/g) than graphene. Under the optimum conditions, factors such as kinds of washing solvents and elution solvents and volume of elution solvent were evaluated. The limits of detection and quantification were 0.01 and 0.03 μg/mL, respectively. The method recoveries of sulfamerazine were in the range of 91.01–96.82% with associated intraday relative standard deviations ranging from 1.63 to 3.46% and interday relative standard deviations ranging from 0.68 to 3.84%. Deep eutectic solvent modified graphene showed satisfactory results (recovery was 95.38%) and potential for rapid purification of sulfamerazine in river water sample in combination with the pipette‐tip solid‐phase extraction method.  相似文献   
997.
A novel design of hollow‐fiber liquid‐phase microextraction containing multiwalled carbon nanotubes as a solid sorbent, which is immobilized in the pore and lumen of hollow fiber by the sol–gel technique, was developed for the pre‐concentration and determination of polycyclic aromatic hydrocarbons in environmental water samples. The proposed method utilized both solid‐ and liquid‐phase microextraction media. Parameters that affect the extraction of polycyclic aromatic hydrocarbons were optimized in two successive steps as follows. Firstly, a methodology based on a quarter factorial design was used to choose the significant variables. Then, these significant factors were optimized utilizing central composite design. Under the optimized condition (extraction time = 25 min, amount of multiwalled carbon nanotubes = 78 mg, sample volume = 8 mL, and desorption time = 5 min), the calibration curves showed high linearity (R 2 = 0.99) in the range of 0.01–500 ng/mL and the limits of detection were in the range of 0.007–1.47 ng/mL. The obtained extraction recoveries for 10 ng/mL of polycyclic aromatic hydrocarbons standard solution were in the range of 85–92%. Replicating the experiment under these conditions five times gave relative standard deviations lower than 6%. Finally, the method was successfully applied for pre‐concentration and determination of polycyclic aromatic hydrocarbons in environmental water samples.  相似文献   
998.
The extraction adsorbent was fabricated by immobilizing the highly specific recognition and binding of aptamer onto the surface of Fe3O4 magnetic nanoparticles, which not only acted as recognition elements to recognize and capture the target molecule berberine from the extract of Cortex phellodendri , but also could favor the rapid separation and purification of the bound berberine by using an external magnet. The developed solid‐phase extraction method in this work was useful for the selective extraction and determination of berberine in Cortex phellodendri extracts. Various conditions such as the amount of aptamer‐functionalized Fe3O4 magnetic nanoparticles, extraction time, temperature, pH value, Mg2+ concentration, elution time and solvent were optimized for the solid‐phase extraction of berberine. Under optimal conditions, the purity of berberine extracted from Cortex phellodendri was as high as 98.7% compared with that of 4.85% in the extract, indicating that aptamer‐functionalized Fe3O4 magnetic nanoparticles‐based solid‐phase extraction method was very effective for berberine enrichment and separation from a complex herb extract. The applicability and reliability of the developed solid‐phase extraction method were demonstrated by separating berberine from nine different concentrations of one Cortex phellodendri extract. The relative recoveries of the spiked solutions of all the samples were between 95.4 and 111.3%, with relative standard deviations ranging between 0.57 and 1.85%.  相似文献   
999.
Bioactive equivalent combinatorial components play a critical role in herbal medicines. However, how to discover and enrich them efficiently is a question for herbal pharmaceuticals researchers. In our work, a novel two‐dimensional reversed‐phase/hydrophilic interaction high‐performance liquid chromatography method was established to perform real‐time components trapping and combining for preparation and isolation of coeluting components. Arenaria kansuensis was taken as an example, and solid‐phase extraction coupled with liquid–liquid extraction as a simple and efficient method for enriching trace components, reversed phase column coupled with hydrophilic interaction liquid chromatography XAmide column as two‐dimensional chromatography technology for isolation and preparation of coeluting constituents, enzyme‐linked immune‐sorbent assay as bio‐guided assay, and anti‐inflammatory bioactivity evaluation for bioactive constituents. A combination of 12 β‐carboline alkaloids was identified as anti‐inflammatory bioactive equivalent combinatorial components from A. kansuensis , which accounts for 1.9% w/w of original A. kansuensis . This work answers the key question of which are real anti‐inflammatory components from A. kansuensis and provides a fast and efficient approach for discovering and enriching trace β‐carboline alkaloids from herbal medicines for the first time. More importantly, the discovery of bioactive equivalent combinatorial components could improve the quality control of herbal products and inspire a herbal medicine based on combinatorial therapeutics.  相似文献   
1000.
Magnetic graphene oxide was modified by four imidazole‐based ionic liquids to synthesize materials for the extraction of polysaccharides by magnetic solid‐phase extraction. Fucoidan and laminarin were chosen as the representative polysaccharides owing to their excellent pharmaceutical value and availability. Fourier transform infrared spectroscopy, field‐emission scanning electron microscopy, and thermogravimetric analysis were applied to characterize the synthesized materials. Single‐factor experiments showed that the extraction efficiency of polysaccharides was affected by the amount of ionic liquids for modification, solid–liquid ratio of brown alga and ethanol, the stirring time of brown alga and ionic liquid‐modified magnetic graphene oxide materials, and amount of 1‐(3‐aminopropyl)imidazole chloride modified magnetic graphene oxide materials added to the brown alga sample solution. The results indicated that 1‐(3‐aminopropyl)imidazole chloride modified magnetic graphene oxide possessed better extraction ability than graphene oxide, magnetic graphene oxide, and other three ionic‐liquid‐modified magnetic graphene oxide materials. The highest extraction recoveries of fucoidan and laminarin extracted by 1‐(3‐aminopropyl)imidazole chloride modified magnetic graphene oxide were 93.3 and 87.2%, respectively. In addition, solid materials could be separated and reused easily owing to their magnetic properties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号