首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   207篇
  免费   22篇
  国内免费   13篇
化学   127篇
晶体学   2篇
力学   32篇
综合类   1篇
数学   3篇
物理学   77篇
  2022年   7篇
  2021年   17篇
  2020年   13篇
  2019年   12篇
  2018年   8篇
  2017年   17篇
  2016年   11篇
  2015年   5篇
  2014年   11篇
  2013年   30篇
  2012年   15篇
  2011年   7篇
  2010年   8篇
  2009年   18篇
  2008年   6篇
  2007年   5篇
  2006年   8篇
  2005年   5篇
  2004年   7篇
  2003年   2篇
  2002年   4篇
  2001年   1篇
  2000年   2篇
  1999年   5篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   4篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1972年   1篇
排序方式: 共有242条查询结果,搜索用时 171 毫秒
31.
单喷嘴横流气雾两相流掺混实验研究   总被引:1,自引:0,他引:1  
采用PIV设备测量了方腔通道内气体液雾两相交叉横向流的掺混,液滴通过旋流雾化喷嘴产生,获得了沿横流方向不同掺混横截面的液滴分布图和液滴运动流线图.比较了三种喷嘴布置角度(60°,90°,120°)在不同气流速度下的掺混效果.结果表明:在横流作用和壁面约束的影响下,流场中出现不同尺度的漩涡,大涡的卷吸与离心作用导致液滴分布不均匀,影响了雾滴与气相的掺混.随着掺混的发展,大涡的强度和尺寸均减小,对雾滴影响减弱,掺混变好;三种喷嘴布置角度下,60°掺混最好,90°次之,120°最差.  相似文献   
32.
Two-phase turbulent flows with the dispersed phase in the form of small, spherical particles are increasingly often computed with the large-eddy simulation (LES) of the carrier fluid phase, coupled to the Lagrangian tracking of particles. To enable further model development for LES with inertial particles subject to gravity, we consider direct numerical simulations of homogeneous isotropic turbulence with a large-scale forcing. Simulation results, both without filtering and in the a priori LES setting, are reported and discussed. A full (i.e. a posteriori) LES is also performed with the spectral eddy viscosity. Effects of gravity on the dispersed phase include changes in the average settling velocity due to preferential sweeping, impact on the radial distribution function and radial relative velocity, as well as direction-dependent modification of the particle velocity variance. The filtering of the fluid velocity, performed in spectral space, is shown to have a non-trivial impact on these quantities.  相似文献   
33.
This review focuses on recent developments in the fabrication of multiple emulsions in micro-scale systems such as membranes, microchannel array, and microfluidic emulsification devices. Membrane and microchannel emulsification offer great potential to manufacture multiple emulsions with uniform drop sizes and high encapsulation efficiency of encapsulated active materials. Meanwhile, microfluidic devices enable an unprecedented level of control over the number, size, and type of internal droplets at each hierarchical level but suffer from low production scale. Microfluidic methods can be used to generate high-order multiple emulsions (triple, quadruple, and quintuple), non-spherical (discoidal and rod-like) drops, and asymmetric drops such as Janus and ternary drops with two or three distinct surface regions. Multiple emulsion droplets generated in microfabricated devices can be used as templates for vesicles like polymersomes, liposomes, and colloidosomes with multiple inner compartments for simultaneous encapsulation and release of incompatible active materials or reactants.  相似文献   
34.
Quan-Yuan Zeng 《中国物理 B》2022,31(4):46801-046801
The impact of droplets on the liquid film is widely involved in industrial and agricultural fields. In recent years, plenty of works are limited to dry walls or stationary liquid films, and the research of multi-droplet impact dynamic films is not sufficient. Based on this, this paper employs a coupled level set and volume of fluid (CLSVOF) method to numerically simulate two-droplet impingement on a dynamic liquid film. In our work, the dynamic film thickness, horizontal central distance between the droplets, droplets' initial impact speed, and simultaneously the flow velocity of the moving film are analyzed. The evolution phenomenon and mechanism caused by the collision are analyzed in detail. We find that within a certain period of time, the droplet spacing does not affect the peripheral crown height; when the droplet spacing decreases or the initial impact velocity increases, the height of the peripheral crown increases at the beginning, and then, because the crown splashed under Rayleigh-Plateau instability, this results in the reduction of the crown height. At the same time, it is found that when the initial impact velocity increases, the angle between the upstream peripheral jet and the dynamic film becomes larger. The more obvious the horizontal movement characteristics, the more restrained the crown height; the spread length increases with the increase of the dynamic film speed, droplet spacing and the initial impact velocity. When the liquid film is thicker, more fluid enters the crown, due to the crown being unstable, the surface tension is not enough to overcome the weight of the rim at the end of the crown, resulting in droplets falling off.  相似文献   
35.
36.
快速减压条件下液滴热动力学行为的实验研究   总被引:2,自引:0,他引:2  
实验研究了快速降压过程中悬挂单水滴闪蒸/冻结过程,得到了典型条件下液滴闪蒸/冻结过程的热动力学特征,并基于实验观测结果,探讨了不凝气体对液滴闪蒸/冻结热动力学过程的影响。实验发现,起始冻结时的液滴过冷度近似为常数,而再辉温度对应于终态蒸汽分压所确定的气固相变平衡温度。这些结果有助于正确预言高真空环境中的液滴闪蒸/冻结特征。  相似文献   
37.
The collisional dynamics of two symmetric droplets with equal intraspecies scattering lengths and particle number density for each component is studied by solving the corresponding extended Gross−Pitaevskii equation in two dimensions by including a logarithmic correction term in the usual contact interaction. We find the merging droplet after collision experiences a quadrupole oscillation in its shape and the oscillation period is found to be independent of the incidental momentum for small droplets. With increasing collision momentum the colliding droplets may separate into two, or even more, and finally into small pieces of droplets. For these dynamical phases we manage to present boundaries determined by the remnant particle number in the central area and the damped oscillation of the quadrupole mode. A stability peak for the existence of droplets emerges at the critical particle numberNc ≃ 48 for the quasi-Gaussian and flat-top shapes of the droplets.  相似文献   
38.
In this article, we present the motion, deformation, and coalescence of ferrofluid droplets suspended in a nonmagnetic fluid, subjected to a uniform magnetic field in both vertical and horizontal directions. A coupling between the simplified multiphase lattice Boltzmann method and the self-correcting scheme is constructed to numerically solve the two-dimensional flow field and the magnetostatics equations, respectively. The Cahn-Hilliard equation is employed to seize the diffuse interface between magnetic and nonmagnetic fluids. In order to validate the model, deformation of a ferrofluid droplet suspended in nonmagnetic fluid is simulated as a test case and the results are compared with numerical and experimental results. Furthermore, a detailed analysis on the behavior of falling ferrofluid droplets and the coalescence between a pair of ferrofluid droplets under the effect of different magnetic fields and different droplets configurations are also presented in this article. The results provide significant insight and a better understanding of these phenomena. It is found that for higher values of magnetic bond number and susceptibility, the droplet deformation is significant and the falling process is faster while a reverse behavior is observed for higher values of Eötvös number. Moreover, the magnetic energy density exhibits an interesting behavior in the vicinity of the droplets. It is concentrated between the droplets with a nonuniform distribution when the droplets are close to each other.  相似文献   
39.
  1. Download : Download high-res image (211KB)
  2. Download : Download full-size image
  相似文献   
40.
The fluid's motion inside emulsion droplets is analysed when they mutually approach along their common axis and a thin liquid film is formed outside. A qualitative flow pattern is presented. Two particular cases are treated — a creeping motion and a boundary layer flow inside the droplets. Estimates are made for the tangential velocity at the droplet/film interface, for the drag force and for the energy dissipated in the respective phases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号