首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   876篇
  免费   4篇
  国内免费   23篇
化学   117篇
晶体学   3篇
力学   588篇
综合类   3篇
数学   43篇
物理学   149篇
  2024年   1篇
  2023年   4篇
  2022年   3篇
  2021年   4篇
  2020年   23篇
  2019年   12篇
  2018年   4篇
  2017年   28篇
  2016年   33篇
  2015年   27篇
  2014年   48篇
  2013年   47篇
  2012年   15篇
  2011年   54篇
  2010年   42篇
  2009年   72篇
  2008年   74篇
  2007年   84篇
  2006年   49篇
  2005年   30篇
  2004年   32篇
  2003年   32篇
  2002年   24篇
  2001年   16篇
  2000年   15篇
  1999年   17篇
  1998年   27篇
  1997年   5篇
  1996年   11篇
  1995年   10篇
  1994年   8篇
  1993年   9篇
  1992年   12篇
  1991年   3篇
  1990年   3篇
  1989年   2篇
  1988年   8篇
  1987年   4篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1981年   1篇
  1979年   2篇
  1977年   2篇
  1975年   2篇
  1974年   1篇
排序方式: 共有903条查询结果,搜索用时 62 毫秒
51.
The problems of fracture under initial stresses acting along cracks in [A.N. Guz’, Mechanics of Brittle Fracture of Materials with Initial Stresses, Naukova Dumka, Kiev, 1983 (in Russian)] is studied. Other approaches and concepts are also briefly discussed. Results for isolated and near-the-surface cracks are given.  相似文献   
52.
朱宝安  韩森 《力学季刊》1993,14(2):37-44
本文给出的力学问题加权残值法的数值解法,可直观地表示出解的最小上边界和最大下边界。  相似文献   
53.
The effect of long-range forces on the dynamics of a bar   总被引:2,自引:0,他引:2  
The one-dimensional dynamic response of an infinite bar composed of a linear “microelastic material” is examined. The principal physical characteristic of this constitutive model is that it accounts for the effects of long-range forces. The general theory that describes our setting, including the accompanying equation of motion, was developed independently by Kunin (Elastic Media with Microstructure I, 1982), Rogula (Nonlocal Theory of Material Media, 1982) and Silling (J. Mech. Phys. Solids 48 (2000) 175), and is called the peridynamic theory. The general initial-value problem is solved and the motion is found to be dispersive as a consequence of the long-range forces. The result converges, in the limit of short-range forces, to the classical result for a linearly elastic medium. Explicit solutions in elementary form are given in a broad class of special cases. The most striking observations arise in the Riemann-like problem corresponding to a constant initial displacement field and a piecewise constant initial velocity field. Even though, initially, the displacement field is continuous, it involves a jump discontinuity for all later times, the Lagrangian location of which remains stationary. For some materials the magnitude of the discontinuity-jump oscillates about an average value, while for others it grows monotonically, presumably fracturing the material when it exceeds some critical level.  相似文献   
54.
The effect of transverse shear on delamination in layered, isotropic, linear-elastic materials has been determined. In contrast to the effects of an axial load or a bending moment on the energy-release rate for delamination, the effects of shear depend on the details of the deformation in the crack-tip region. It therefore does not appear to be possible to deduce rigorous expressions for the shear component of the energy-release rate based on steady-state energy arguments or on any type of modified beam theory. The expressions for the shear component of the energy-release rate presented in this work have been obtained using finite-element approaches. By combining these results with earlier expressions for the bending-moment and axial-force components of the energy-release rates, the framework for analyzing delamination in this type of geometry has been extended to the completely general case of any arbitrary loading. The relationship between the effects of shear and other fracture phenomena such as crack-tip rotations, elastic foundations and cohesive zones are discussed in the final sections of this paper.  相似文献   
55.
For many motion control applications spatial constraints are often more important than temporal constraints. In recent work, we have developed a spatial control strategy called the ε-controller for mobile robot applications. The control strategy is based solely on static path geometry with position (in space) feedback. Motivated by this idea, in this paper, we consider the notion of spatial-based iterative learning control (ILC). Specifically, we consider repetitive operation problems where corrections are made to the control signal from trial to trial. Unlike traditional ILC, however, which updates control signals based on the time elapsed along a trajectory, we instead make updates based on path errors and progress along the path. The idea is demonstrated via simulation for a system with bang–bang velocity control. Experimental results using a high-precision, two-axis gimbal mechanism are presented to show the effectiveness of the strategy.  相似文献   
56.
57.
Lenci  Stefano 《Meccanica》2004,39(5):415-439
The elastic and damage longitudinal shear behavior of highly concentrated long fiber composites is analyzed by means of a simplified model where it is supposed that the fibers are rigid and touch each other in a regular hexagonal array. In the microscopic unit cell the problem is reduced to six similar problems of antiplane deformation on an equilateral circular triangle (see forthcoming Figure 2). These problems are solved in closed form by the complex variable method, and the solution is used to determine the longitudinal shear moduli, and to study their dependence on the microscopic damage caused by the circumferential debonding at the fiber–matrix interface. Subsequently, the damage evolution is investigated under the hypothesis that the microcracks propagate according to the Griffiths energy criterion. The elastic domain, where there is no damage propagation, is determined and it is shown that it is a polygonal convex set symmetric with respect to the origin. The overall damage evolution is discussed in detail and illustrated with some examples which highlight the very rich nature of the proposed model.  相似文献   
58.
Hang Xu  Shi-Jun Liao 《Meccanica》2006,41(6):599-609
The series solutions of unsteady flows of a viscous incompressible electrically conducting fluid caused by an impulsively rotating infinite disk are given by means of an analytic technique, namely the homotopy analysis method. Using a set of new similarity transformations, we transfer the Navier–Stokes equations into a pair of nonlinear partial differential equations. The convergent series solutions are obtained, which are uniformly valid for all dimensionless time 0 ≤ τ < ∞ in the whole spatial region 0 ≤ η < ∞. To the best of our knowledge, such kind of series solutions have never been reported. The effect of magnetic number on the velocity is investigated.  相似文献   
59.
Vladimir Kobelev 《Meccanica》2006,41(6):653-660
Failure of a composite is a complex process accompanied by irreversible changes in the microstructure of the material. Microscopic mechanisms are known of the accumulation of damage and failure of the type of localized and multiple ruptures of the fibers delamination along interphase boundaries, and also mechanisms associated with fracture of fibers. In this work, we propose a mathematical model of the local mechanism of failure of a composite material randomly reinforced with a system of short fibers. We implement the Cosserat moment model of crack tip for filament material, reinforced with whiskers or in fiber- reinforced polycrystalline materials. It is assumed that the angular distribution of the fibers is isotropic and the elastic characteristics of the fibers are considerably higher than the elastic constants of the matrix. We implement the homogenization procedure for the effective Cosserat constants similarly to the effective elastic constants. The singular solution in the vicinity of the crack tip in the Cosserat moment model is found. Using this solution, we examine the bending stresses in the filaments due to effective moment stresses in the material. The constructed model describes the phenomenon of fracture of the fibers occurring during crack propagation in those composites. The following assumptions are used as the main hypotheses for the micromechanical model. The matrix contains a nucleation crack. When the load is increased the crack grows and its boundary comes into contact with the reinforcing fibers. A further increase of the stress causes bending of the fiber. When~the fiber curvature reaches a specific critical value, the fiber ruptures. If the stress at infinity is given, the fibers no longer delay the development of failure during crack propagation The degree of bending distortion of the fiber in the vicinity of the boundary of the crack is determined by the moment model of the material. The necessity to take into account the moment stresses in the failure theory of the reinforced material was stressed in [Muki and Sternberg (1965) Zeitschrift f angew Math und Phys 16:611–615; Garajeu and Soos (2003) Math Mech Solids 8(2):189–218; Ostoja-Starzewski et al (1999) Mech Res Commun 26:387–396]. The moment Cosserat stresses were accounted also for inhomogeneous biomechanical materials by Buechner and Lakes (2003) Bio Mech Model Mechanobiol 1: 295–301. We should also mention the important methodological studies [Sternberg and Muki (1967) J Solids Struct 1:69–95; Atkinson and Leppington (1977) Int J Solids Struct 13: 1103–1122] concerned with the moment stresses in homogeneous fracture mechanics.  相似文献   
60.
High velocity penetration of a rigid conical impactor into a ductile target with air gaps between the plates is studied using the cylindrical cavity expansion approximation describing impactor–target interaction. It is showed that the latter model predicts improvement of the ballistic performance of the target with the increase of air gaps. It is found analytically that the ballistic limit velocity of the target consisting of N plates with a fixed total thickness with large air gaps increases with the increase of N. The conditions are discussed when the predicted effects can be most pronounced.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号