首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35732篇
  免费   3863篇
  国内免费   6492篇
化学   30991篇
晶体学   1389篇
力学   862篇
综合类   244篇
数学   2089篇
物理学   10512篇
  2024年   80篇
  2023年   408篇
  2022年   1008篇
  2021年   938篇
  2020年   1190篇
  2019年   1166篇
  2018年   986篇
  2017年   1322篇
  2016年   1374篇
  2015年   1250篇
  2014年   1635篇
  2013年   3014篇
  2012年   2076篇
  2011年   2529篇
  2010年   2097篇
  2009年   2438篇
  2008年   2468篇
  2007年   2501篇
  2006年   2323篇
  2005年   2111篇
  2004年   1897篇
  2003年   1553篇
  2002年   1415篇
  2001年   1172篇
  2000年   1102篇
  1999年   891篇
  1998年   758篇
  1997年   678篇
  1996年   575篇
  1995年   582篇
  1994年   508篇
  1993年   424篇
  1992年   327篇
  1991年   238篇
  1990年   153篇
  1989年   143篇
  1988年   128篇
  1987年   74篇
  1986年   79篇
  1985年   67篇
  1984年   53篇
  1983年   35篇
  1982年   45篇
  1981年   48篇
  1980年   51篇
  1979年   45篇
  1978年   37篇
  1977年   28篇
  1976年   16篇
  1973年   15篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
941.
Developing excellent strategies to optimize the electrochemiluminescence (ECL) performance of C3N4 materials remains a challenge due to the electrode passivation, causing weak and unstable light emission. A strategy of controlling the calcination atmosphere was proposed to improve the ECL performance of C3N4 nanotubes. Interestingly, we found that calcination atmosphere played a key role in specific surface area, pore-size and crystallinity of C3N4 nanotubes. The C3N4 nanotubes prepared in the Air atmosphere (C3N4 NT-Air) possess a larger specific surface area, smaller pore-size and better crystallinity, which is crucial to improve ECL properties. Therefore, more C3N4•− excitons could be produced on C3N4 NT-Air, reacting with the SO4•− during the electrochemical reaction, which can greatly increase the ECL signal. Furthermore, when C3N4 nanotube/K2S2O8 system is proposed as a sensing platform, it offers a high sensitivity, and good selectivity for the detection of Cu2+, with a wide linear range of 0.25 nM~1000 nM and a low detection limit of 0.08 nM.  相似文献   
942.
This research aims to develop new high-energy dense ordinary- and nano-energetic composites based on hydrazine 3-nitro-1,2,4-triazol-5-one (HNTO) and nitrated cellulose and nanostructured nitrocellulose (NC and NMCC). The elaborated energetic formulations (HNTO/NC and HNTO/NMCC) were fully characterized in terms of their chemical compatibility, morphology, thermal stability, and energetic performance. The experimental findings implied that the designed HNTO/NC and HNTO/NMCC formulations have good compatibilities with attractive characteristics such as density greater than 1.780 g/cm3 and impact sensitivity around 6 J. Furthermore, theoretical performance calculations (EXPLO5 V6.04) displayed that the optimal composition of the as-prepared energetic composites yielded excellent specific impulses and detonation velocities, which increased from 205.7 s and 7908 m/s for HNTO/NC to 209.6 s and 8064 m/s for HNTO/NMCC. Moreover, deep insight on the multi-step kinetic behaviors of the as-prepared formulations was provided based on the measured DSC data combined with isoconversional kinetic methods. It is revealed that both energetic composites undergo three consecutive exothermic events with satisfactory activation energies in the range of 139–166 kJ/mol for HNTO/NC and 119–134 kJ/mol for HNTO/NMCC. Overall, this research displayed that the new developed nanoenergetic composite based on nitrated cellulose nanostructure could serve as a promising candidate for practical applications in solid rocket propellants and composite explosives.  相似文献   
943.
Fe(Ш)-doped graphitic carbon nitride (Fe(Ш)-CN) photocatalysts with various Fe(Ш) ions content were prepared via ultrasonic method. Detailed physical characterization indicated that Fe(Ш) ions had been successfully doped into the frame of g-C3N4. The photocatalytic activities were investigated, and methyl orange (MO) and tetracycline hydrochloride (TC) were used as the targeted pollutants. The as-prepared Fe(Ш)-CN materials exhibited higher photocatalytic activities than those of the pure g-C3N4. Specifically, the degradation rate of 2Fe(Ш)-CN under visible light was 2.06 times higher for MO and 2.65 times higher for TC than that of g-C3N4. The increased photocatalytic activities of Fe(Ш)-CN were mainly attributed to the enhanced light absorption ability and the rapid separation of photogenerated carriers. Moreover, the importance of active species during the reaction process was also explored, and the results indicated that •O2 is the main active species.  相似文献   
944.
Composite materials based on titania nanoparticles (TiO2 NPs) and three metal-organic frameworks (MOFs) called MIL-53 (Fe) ((Fe (III) (OH) (1,4-BDC)), MILs (Materials Institute Lavoisier)), MIL-100 (Fe) (Fe3O(H2O)2OH(BTC)2), and Fe-BTC (iron-benzenetricarboxylate) with different percentages of TiO2 NPs (0.5, 1, and 2.5% wt.) were synthesized using the solvothermal method and used as photocatalytic materials in the degradation of two dyes (Orange II and Reactive Black 5 (RB5)). The pristine and composite materials were characterized with X-ray diffraction, Raman, UV–Vis and Fourier transform infrared spectroscopy and scanning electron microscopy techniques. The 2.5TiO2/MIL-100 composite material showed the best results for the degradation of both dyes (Reactive Black 5 and Orange II dye, 99% and 99.5% degradation in 105 and 150 min, respectively). The incorporation of TiO2 NPs into MOFs can decrease the recombination of the change carrier in the MOF, increasing the photocatalytic activity of a pristine MOF. Results therefore indicated that the synthesized MOF nanocomposites have good potential for wastewater treatment.  相似文献   
945.
In this study, Scenedesmus sp. FSP3 was cultured using a two-stage culture strategy for CO2 fixation and lutein production. During the first stage, propylene carbonate was added to the medium, with 5% CO2 introduced to promote the rapid growth and CO2 fixation of the microalgae. During the second stage of cultivation, a NaCl concentration of 156 mmol L−1 and a light intensity of 160 μmol m−2 s−1 were used to stimulate the accumulation of lutein in the microalgal cells. By using this culture method, high lutein production and CO2 fixation were simultaneously achieved. The biomass productivity and carbon fixation rate of Scenedesmus sp. FSP3 reached 0.58 g L−1 d−1 and 1.09 g L−1 d−1, with a lutein content and yield as high as 6.45 mg g−1 and 2.30 mg L−1 d−1, respectively. The results reveal a commercially feasible way to integrate microalgal lutein production with CO2 fixation processes.  相似文献   
946.
Design and synthesis of 2-(aryl/thiophen-2-yl)quinazolin-4(3H)-ones and 4-cyano-2-arylquinazolines with Et2N-, Ph2N- or carbazol-9-yl- electron donating fragment are described. The key photophysical properties of these compounds have been studied by UV/Vis absorption and fluorescence spectroscopy in solvents of different polarity (toluene and MeCN). 2-(Aryl/thiophen-2-yl)quinazolin-4(3H)-ones show fluorescence in blue-green region in toluene solution with quantum yields up to 89% in the case of 2-(4’-N,N-diphenylamino[1,1’-biphenyl]-4-yl)-quinazolin-4(3H)-one. Moreover, triphenylamino derivative based on quinazolin-4(3H)-one with para-phenylene linker displays the highest quantum yield of 40% in powder. The fluorescence QY of Et2N and Ph2N derivatives decrease when going from toluene to MeCN solution, whereas carbazol-9-yl counterparts demonstrate strengthening of intensity that emphasizes the strong influence of donor fragment nature on photophysical properties. 4-Cyanoquinazolines are less emissive in both solvents, as well as, in solid state. The introduction of cyano group into position 4 leads to orange/red colored powder and dual emission bands. Some molecules demonstrate the increase in emission intensity upon addition of water to MeCN solution. According to frontier molecular orbitals (HOMO, LUMO) calculations, the energy gap of 4-cyanoquinazoline decreases by more than 1 eV compared to quinazolin-4-one, that is consistent with experimental data.  相似文献   
947.
The difficulty of exposing active sites and easy recombination of photogenerated carriers have always been two critical problems restricting the photocatalytic activity of g-C3N4. Herein, a simple (NH4)2MoO4-induced one-step calcination method was successfully introduced to transform bulk g-C3N4 into g-C3N4/MoO2 composites with a large specific surface area. During the calcination, with the assistance of NH3 and water vapor produced by ammonium molybdate, the pyrolytical oxidation and depolymerization of a g-C3N4 interlayer were accelerated, finally realizing the exfoliation of the g-C3N4. Furthermore, another pyrolytical product of ammonium molybdate was transformed into MoO2 under an NH3 atmosphere, which was in situ loaded on the surface of a g-C3N4 nanosheet. Additionally, the results of photocatalytic hydrogen evolution under visible light show that the optimal g-C3N4/MoO2 composite has a high specific surface area and much improved performance, which is 4.1 times that of pure bulk g-C3N4. Such performance improvement can be attributed to the full exposure of active sites and the formation of abundant heterojunctions. However, with an increasing feed amount of ammonium molybdate, the oxidation degree of g-C3N4 was enhanced, which would widen the band gap of g-C3N4, leading to a weaker response ability to visible light. The present strategy will provide a new idea for the simple realization of exfoliation and constructing a heterojunction for g-C3N4 simultaneously.  相似文献   
948.
Globally, plastics are used in various products. Concerns regarding the human body’s exposure to plastics and environmental pollution have increased with increased plastic use. Microplastics can be detected in the atmosphere, leading to potential human health risks through inhalation; however, the toxic effects of microplastic inhalation are poorly understood. In this study, we examined the pulmonary toxicity of polystyrene (PS), polypropylene (PP), and polyvinyl chloride (PVC) in C57BL/6, BALB/c, and ICR mice strains. Mice were intratracheally instilled with 5 mg/kg of PS, PP, or PVC daily for two weeks. PS stimulation increased inflammatory cells in the bronchoalveolar lavage fluid (BALF) of C57BL/6 and ICR mice. Histopathological analysis of PS-instilled C57BL/6 and PP-instilled ICR mice showed inflammatory cell infiltration. PS increased the NLR family pyrin domain containing 3 (NLRP3) inflammasome components in the lung tissue of C57BL/6 and ICR mice, while PS-instilled BALB/c mice remained unchanged. PS stimulation increased inflammatory cytokines, including IL-1β and IL-6, in BALF of C57BL/6 mice. PP-instilled ICR mice showed increased NLRP3, ASC, and Caspase-1 in the lung tissue compared to the control groups and increased IL-1β levels in BALF. These results could provide baseline data for understanding the pulmonary toxicity of microplastic inhalation.  相似文献   
949.
This work considers the enhancement of the thermoelectric figure of merit, ZT, of SrTiO3 (STO) semiconductors by (La, Dy and N) co-doping. We have focused on SrTiO3 because it is a semiconductor with a high Seebeck coefficient compared to that of metals. It is expected that SrTiO3 can provide a high power factor, because the capability of converting heat into electricity is proportional to the Seebeck coefficient squared. This research aims to improve the thermoelectric performance of SrTiO3 by replacing host atoms by La, Dy and N atoms based on a theoretical approach performed with the Vienna Ab Initio Simulation Package (VASP) code. Here, undoped SrTiO3, Sr0.875La0.125TiO3, Sr0.875Dy0.125TiO3, SrTiO2.958N0.042, Sr0.750La0.125Dy0.125TiO3 and Sr0.875La0.125TiO2.958N0.042 are studied to investigate the influence of La, Dy and N doping on the thermoelectric properties of the SrTiO3 semiconductor. The undoped and La-, Dy- and N-doped STO structures are optimized. Next, the density of states (DOS), band structures, Seebeck coefficient, electrical conductivity per relaxation time, thermal conductivity per relaxation time and figure of merit (ZT) of all the doped systems are studied. From first-principles calculations, STO exhibits a high Seebeck coefficient and high figure of merit. However, metal and nonmetal doping, i.e., (La, N) co-doping, can generate a figure of merit higher than that of undoped STO. Interestingly, La, Dy and N doping can significantly shift the Fermi level and change the DOS of SrTiO3 around the Fermi level, leading to very different thermoelectric properties than those of undoped SrTiO3. All doped systems considered here show greater electrical conductivity per relaxation time than undoped STO. In particular, (La, N) co-doped STO exhibits the highest ZT of 0.79 at 300 K, and still a high value of 0.77 at 1000 K, as well as high electrical conductivity per relaxation time. This renders it a viable candidate for high-temperature applications.  相似文献   
950.
Gentamicin (GEN) is a kind of aminoglycoside antibiotic with the adverse effect of nephrotoxicity. Currently, no effective measures against the nephrotoxicity have been approved. In the present study, epigallocatechin gallate (EG), a useful ingredient in green tea, was used to attenuate its nephrotoxicity. EG was shown to largely attenuate the renal damage and the increase of malondialdehyde (MDA) and the decrease of glutathione (GSH) in GEN-injected rats. In NRK-52E cells, GEN increased the cellular ROS in the early treatment phase and ROS remained continuously high from 1.5 H to 24 H. Moreover, EG alleviated the increase of ROS and MDA and the decrease of GSH caused by GEN. Furthermore, EG activated the protein levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1). After the treatment of GEN, the protein level of cleaved-caspase-3, the flow cytometry analysis and the JC-1 staining, the protein levels of glutathione peroxidase 4 (GPX4) and SLC7A11, were greatly changed, indicating the occurrence of both apoptosis and ferroptosis, whereas EG can reduce these changes. However, when Nrf2 was knocked down by siRNA, the above protective effects of EG were weakened. In summary, EG attenuated GEN-induced nephrotoxicity by suppressing apoptosis and ferroptosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号