首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52篇
  免费   2篇
  国内免费   2篇
化学   20篇
力学   6篇
数学   3篇
物理学   27篇
  2023年   3篇
  2022年   4篇
  2021年   5篇
  2020年   2篇
  2019年   1篇
  2017年   3篇
  2016年   4篇
  2015年   2篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2009年   4篇
  2007年   3篇
  2006年   3篇
  2005年   2篇
  2004年   2篇
  2003年   3篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1991年   1篇
  1988年   1篇
  1986年   1篇
  1978年   1篇
排序方式: 共有56条查询结果,搜索用时 0 毫秒
11.
In this report, the crystal structure of a new polymorphic form of 2-(4-Methylbenzamido)-5-(4-fluoro-3-phenoxyphenyl)-1,3,4-thiadiazole have been investigated and compared with the previously reported form. Crystallization experiments from a non-polar solvent resulted in the formation of a newly obtained polymorph of this substituted 1,3,4 thiadiazole compound. Structural differences and similarities in both the polymorphic forms were explored in terms of supramolecular building blocks present in the crystal packing and their influences on the supramolecular construct are investigated in terms of the nature and energetics of the associated interactions. In addition, Hirshfeld surface analysis and calculations on the enrichment ratio were carried out for both the forms to isolate the various types of interatomic contacts and differentiate their contribution towards the molecular assembly, as obtained from 2D fingerprint plots. Also, the interaction energies were computed for the new polymorph and compared with the reported form. The studies render quantitative insights into the role of strong H-bonds and weak intermolecular interactions acting cooperatively in the crystal. In addition, the role of both electrostatic and dispersion energies contributes to the overall stability in the crystal packing.  相似文献   
12.
Biophysical and structural studies of cationic amphipathic antimicrobial peptides have revealed new mechanistic details concerning their membrane interactions. In interfacial environments the peptides adopt amphipathic conformations and the resulting distribution of polar, charged and hydrophobic residues allows them to partition into the bilayer interface. For several helical peptides it was found that their long axis is oriented parallel to the membrane surface, an arrangement which results in considerable perturbations in the packing of the lipid bilayer. Within the molecular shape concept the peptides act as wedge-like structures which impose positive curvature strain on the membrane. As a consequence a wide variety of morphologies are observed of peptide–lipid mixtures which strongly depend on the detailed peptide sequence, the membrane lipid composition, buffer, temperature and other environmental parameters. Therefore, the peptide–lipid systems are best described by phase diagrams, similar to the ones of detergent–lipid mixtures, encompassing on the one extreme regions where the peptide stabilizes the bilayer and on the other extreme regions where membrane lysis occurs. The effects of peptide sequence, membrane penetration depth, lipid composition and membrane surface charge density on membrane-association, -morphology and the resulting phase boundaries are discussed.  相似文献   
13.
Electricity is regarded as one of the most challenging topics for students of all ages. Several researchers have suggested that na?ve misconceptions about electricity stem from a deep incommensurability (Slotta and Chi 2006; Chi 2005) or incompatibility (Chi et al. 1994) between na?ve and expert knowledge structures. In this paper we argue that adopting an emergent levels-based perspective as proposed by Wilensky and Resnick (1999), allows us to reconceive commonly noted misconceptions in electricity as behavioral evidences of “slippage between levels,” i.e., these misconceptions appear when otherwise productive knowledge elements are sometimes activated inappropriately due to certain macro-level phenomenological cues only. We then introduce NIELS (NetLogo Investigations In Electromagnetism), a curriculum of emergent multi-agent-based computational models. NIELS models represent phenomena such as electric current and resistance as emergent from simple, body-syntonic interactions between electrons and other charges in a circuit. We discuss results from a pilot implementation of NIELS in an undergraduate physics course, that highlight the ability of an emergent levels-based approach to provide students with a deep, expert-like understanding of the relevant phenomena by bootstrapping, rather than discarding their existing repertoire of intuitive knowledge.
Pratim SenguptaEmail:
  相似文献   
14.
We show that the method used in the Schwarzschild black hole for finding the elementary solution of the electrostatic equation in closed form cannot extend in higher dimensions. By contrast, we prove the existence of static, spherically symmetric geometries with a non-degenerate horizon in which the static scalar equation can be solved in closed form. We give the explicit results in 6 dimensions. We determine moreover the expressions of the electrostatic potential and of the static scalar field for a point source in the extremal Reissner-Nordström black holes in higher dimensions.  相似文献   
15.
In this work, repeated sliding tests for single granules were investigated for their electrostatics generation. Several factors were considered including granule length-ratio, sliding face shape, sliding times, sliding area, sliding velocity, front-facing edge, plate inclined angle and humidity. Generally, it is found that electrostatics increases with granule length-ratio. Two kinds of granular sliding face shapes were used in this work, half circle and rectangle. Under the same working conditions, a granule with the sliding face shape of half-circle tends to produce more electrostatics than that of rectangle. In addition, the efficiency of granule charge generation increases with sliding times although the amount of impact charge is decreased by the initial charge. Electrostatics increases with sliding area, which is independent of granule sliding-face shape and sliding times. Electrostatics also increases with granule sliding velocity. Front-facing sliding with a short edge tends to generate more electrostatics than that with a long edge. In this work, three sliding-plate angles were chosen as 30°,54°,70°, where granules sliding along the inclined plate at 54° acquired the highest electrostatics in comparison with other two angles. Humidity has significant effect on electrostatics as that electrostatics decreases with humidity. At lower relative humidity, the granule length-ratio is found to have more effect on electrostatics.  相似文献   
16.
《Physics letters. A》2020,384(25):126608
Mean Field Games provide a powerful framework to analyze the dynamics of a large number of controlled objects in interaction. Though these models are much simpler than the underlying differential games they describe in some limit, their behavior is still far from being fully understood. When the system is confined, a notion of “ergodic state” has been introduced that characterizes most of the dynamics for long optimization times. Here we consider a class of models without such an ergodic state, and show the existence of a scaling solution that plays a similar role. Its universality and scaling behavior can be inferred from a mapping to an electrostatic problem.  相似文献   
17.
The equations governing mechanics and electrostatics are formulated for a system in which the material deformations and electrostatic polarizations are arbitrary. A mechanical/electrostatic energy balance is formulated for this situation in terms of the electric enthalpy, in which the electric potential and the electric field are the independent variables, and charge and electric displacement, respectively, are the conjugate thermodynamic forces. This energy statement is presented in the form of a principle of virtual work (PVW), in which external virtual work is equated to internal virtual work. The resulting expression involves an internal material virtual work in which (1) material polarization is work-conjugate to increments of electric field, and (2) a combination of Cauchy stress, Maxwell stress and a product of polarization and electric field is work-conjugate to increments of strain. This PVW is valid for all material types, including those that are conservative and those that are dissipative. Such a virtual work expression is the basis for a rigorous formulation of a finite element method for problems involving the deformation and electrostatic charging of materials, including electroactive polymers and switchable ferroelectrics. The internal virtual work expression is used to develop the structure of conservative constitutive laws governing, for example, electroactive elastomers and piezoelectric materials, thereby determining the form of the Maxwell or electrostatic stress. It is shown that the Maxwell or electrostatic stress has a form fully constrained by the constitutive law and cannot be chosen independently of it. The structure of constitutive laws for dissipative materials, such as viscoelastic electroactive polymers and switchable ferroelectrics, is similarly determined, and it is shown that the Maxwell or electrostatic stress for these materials is identical to that for a material having the same conservative response when the dissipative processes in the material are shut off. The form of the internal virtual work is used further to develop the structure of dissipative constitutive laws controlled by rearrangement of material internal variables.  相似文献   
18.
We discuss several results in electrostatics: Onsager’s inequality, an extension of Earnshaw’s theorem, and a result stemming from the celebrated conjecture of Maxwell on the number of points of electrostatic equilibrium. Whenever possible, we try to provide a brief historical context and references.  相似文献   
19.
This paper deals with the problem of dielectric liquids purification. The separation process of mechanical impurities from dielectric liquids in an electric field is analyzed and an experimentally validated mathematical model is proposed for the electroseparation process. The main objective is to find a relationship to describe the kinetics of particles electroseparation, solving the problem of establishing a relationship of dependency between initial concentration and final concentration with time, and determining the electroseparation time depending on particles and liquid dielectric properties.  相似文献   
20.
We analyse the consequences of Quincke rotation on the conductivity of a suspension. Quincke rotation refers to the spontaneous rotation of insulating particles dispersed in a slightly conducting liquid and subject to a high DC electric field: above a critical field, each particle rotates continuously around itself with an axis pointing in any direction perpendicular to the DC field. When the suspension is subject to an electric field lower than the threshold one, the presence of insulating particles in the host liquid decreases the bulk conductivity since the particles form obstacles to ion migration. But for electric fields higher than the critical one, the particles rotate and facilitate ion migration: the effective conductivity of the suspension is increased. We provide a theoretical analysis of the impact of Quincke rotation on the apparent conductivity of a suspension and we present experimental results obtained with a suspension of PMMA particles dispersed in weakly conducting liquids.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号