首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11534篇
  免费   1189篇
  国内免费   409篇
化学   5137篇
晶体学   27篇
力学   1105篇
综合类   31篇
数学   4917篇
物理学   1915篇
  2023年   148篇
  2022年   152篇
  2021年   215篇
  2020年   402篇
  2019年   290篇
  2018年   268篇
  2017年   238篇
  2016年   455篇
  2015年   461篇
  2014年   576篇
  2013年   948篇
  2012年   639篇
  2011年   658篇
  2010年   449篇
  2009年   725篇
  2008年   670篇
  2007年   710篇
  2006年   610篇
  2005年   464篇
  2004年   438篇
  2003年   420篇
  2002年   351篇
  2001年   348篇
  2000年   321篇
  1999年   267篇
  1998年   279篇
  1997年   217篇
  1996年   223篇
  1995年   156篇
  1994年   117篇
  1993年   115篇
  1992年   78篇
  1991年   75篇
  1990年   60篇
  1989年   52篇
  1988年   52篇
  1987年   39篇
  1986年   52篇
  1985年   33篇
  1984年   47篇
  1983年   16篇
  1982年   27篇
  1981年   29篇
  1980年   20篇
  1979年   25篇
  1978年   41篇
  1977年   41篇
  1976年   40篇
  1975年   15篇
  1974年   15篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
41.
Discrete duality finite volume schemes on general meshes, introduced by Hermeline and Domelevo and Omnès for the Laplace equation, are proposed for nonlinear diffusion problems in 2D with nonhomogeneous Dirichlet boundary condition. This approach allows the discretization of non linear fluxes in such a way that the discrete operator inherits the key properties of the continuous one. Furthermore, it is well adapted to very general meshes including the case of nonconformal locally refined meshes. We show that the approximate solution exists and is unique, which is not obvious since the scheme is nonlinear. We prove that, for general W?1,p(Ω) source term and W1‐(1/p),p(?Ω) boundary data, the approximate solution and its discrete gradient converge strongly towards the exact solution and its gradient, respectively, in appropriate Lebesgue spaces. Finally, error estimates are given in the case where the solution is assumed to be in W2,p(Ω). Numerical examples are given, including those on locally refined meshes. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2007  相似文献   
42.
43.
In a previous paper we gave a new formulation and derived the Euler equations and other necessary conditions to solve strong, pathwise, stochastic variational problems with trajectories driven by Brownian motion. Thus, unlike current methods which minimize the control over deterministic functionals (the expected value), we find the control which gives the critical point solution of random functionals of a Brownian path and then, if we choose, find the expected value.This increase in information is balanced by the fact that our methods are anticipative while current methods are not. However, our methods are more directly connected to the theory and meaningful examples of deterministic variational theory and provide better means of solution for free and constrained problems. In addition, examples indicate that there are methods to obtain nonanticipative solutions from our equations although the anticipative optimal cost function has smaller expected value.In this paper we give new, efficient numerical methods to find the solution of these problems in the quadratic case. Of interest is that our numerical solution has a maximal, a priori, pointwise error of O(h3/2) where h is the node size. We believe our results are unique for any theory of stochastic control and that our methods of proof involve new and sophisticated ideas for strong solutions which extend previous deterministic results by the first author where the error was O(h2).We note that, although our solutions are given in terms of stochastic differential equations, we are not using the now standard numerical methods for stochastic differential equations. Instead we find an approximation to the critical point solution of the variational problem using relations derived from setting to zero the directional derivative of the cost functional in the direction of simple test functions.Our results are even more significant than they first appear because we can reformulate stochastic control problems or constrained calculus of variations problems in the unconstrained, stochastic calculus of variations formulation of this paper. This will allow us to find efficient and accurate numerical solutions for general constrained, stochastic optimization problems. This is not yet being done, even in the deterministic case, except by the first author.  相似文献   
44.
Various tests have been carried out in order to compare the performances of several methods used to solve the non-symmetric linear systems of equations arising from implicit discretizations of CFD problems, namely the scalar advection-diffusion equation and the compressible Euler equations. The iterative schemes under consideration belong to three families of algorithms: relaxation (Jacobi and Gauss-Seidel), gradient and Newton methods. Two gradient methods have been selected: a Krylov subspace iteration method (GMRES) and a non-symmetric extension of the conjugate gradient method (CGS). Finally, a quasi-Newton method has also been considered (Broyden). The aim of this paper is to provide indications of which appears to be the most adequate method according to the particular circumstances as well as to discuss the implementation aspects of each scheme.  相似文献   
45.
An efficient preconditioner is developed for solving the Helmholtz problem in both high and low frequency (wavenumber) regimes. The preconditioner is based on hierarchical unknowns on nested grids, known as incremental unknowns (IU). The motivation for the IU preconditioner is provided by an eigenvalue analysis of a simplified Helmholtz problem. The performance of our preconditioner is tested on the iterative solution of two‐dimensional electromagnetic scattering problems. When compared with other well‐known methods, our technique is shown to often provide a better numerical efficacy and, most importantly, to be more robust. Moreover, for the best performance, the number of IU levels used in the preconditioner should be designed for the coarsest grid to have roughly two points per linear wavelength. This result is consistent with the conventional sampling criteria for wave phenomena in contrast with existing IU applications for solving the Laplace/Poisson problem, where the coarsest grid comprises just one interior point. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2007  相似文献   
46.
We describe an approach to the parallel and distributed solution of large-scale, block structured semidefinite programs using the spectral bundle method. Various elements of this approach (such as data distribution, an implicitly restarted Lanczos method tailored to handle block diagonal structure, a mixed polyhedral-semidefinite subdifferential model, and other aspects related to parallelism) are combined in an implementation called LAMBDA, which delivers faster solution times than previously possible, and acceptable parallel scalability on sufficiently large problems. This work was supported in part by NSF grants DMS-0215373 and DMS-0238008.  相似文献   
47.
The convergence rate of a fast-converging second-order accurate iterative method with splitting of boundary conditions constructed by the authors for solving an axisymmetric Dirichlet boundary value problem for the Stokes system in a spherical gap is studied numerically. For R/r exceeding about 30, where r and R are the radii of the inner and outer boundary spheres, it is established that the convergence rate of the method is lower (and considerably lower for large R/r) than the convergence rate of its differential version. For this reason, a really simpler, more slowly converging modification of the original method is constructed on the differential level and a finite-element implementation of this modification is built. Numerical experiments have revealed that this modification has the same convergence rate as its differential counterpart for R/r of up to 5 × 103. When the multigrid method is used to solve the split and auxiliary boundary value problems arising at iterations, the modification is more efficient than the original method starting from R/r ~ 30 and is considerably more efficient for large values of R/r. It is also established that the convergence rates of both methods depend little on the stretching coefficient η of circularly rectangular mesh cells in a range of η that is well sufficient for effective use of the multigrid method for arbitrary values of R/r smaller than ~ 5 × 103.  相似文献   
48.
Applied Biochemistry and Biotechnology -  相似文献   
49.
本文讨论了一类Rosenbrock方法求解比例延迟微分方程,y′(t)=λy(t) μy(qt),λ,μ∈C,0  相似文献   
50.
A method for solving a linear system is defined. It is a Lanczos-type method, but it uses formal vector orthogonality instead of scalar orthogonality. Moreover, the dimension of vector orthogonality may vary which gives a large freedom in leading the algorithm, and controlling the numerical problems. The ideas of truncated and restarted methods are revisited. The obtained residuals are exactly orthogonal to a space of increasing dimension. Some experiments are done, the problem of finding automaticaly good directions of projection remains partly open.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号