全文获取类型
收费全文 | 99篇 |
免费 | 22篇 |
国内免费 | 8篇 |
专业分类
化学 | 6篇 |
晶体学 | 3篇 |
力学 | 39篇 |
综合类 | 5篇 |
数学 | 1篇 |
物理学 | 75篇 |
出版年
2023年 | 2篇 |
2022年 | 3篇 |
2021年 | 9篇 |
2020年 | 2篇 |
2019年 | 5篇 |
2018年 | 1篇 |
2017年 | 14篇 |
2016年 | 7篇 |
2015年 | 2篇 |
2014年 | 4篇 |
2013年 | 12篇 |
2012年 | 8篇 |
2011年 | 2篇 |
2010年 | 4篇 |
2009年 | 7篇 |
2008年 | 8篇 |
2007年 | 5篇 |
2006年 | 5篇 |
2005年 | 11篇 |
2004年 | 3篇 |
2003年 | 3篇 |
2002年 | 2篇 |
2001年 | 3篇 |
2000年 | 1篇 |
1999年 | 2篇 |
1995年 | 1篇 |
1990年 | 1篇 |
1989年 | 1篇 |
1988年 | 1篇 |
排序方式: 共有129条查询结果,搜索用时 0 毫秒
111.
112.
本文研究了在自由振荡钕玻璃激光照射下LY12铝靶产生喷溅的物理机制及特性。这种幅度与时间无规律变化的激光序列尖峰脉冲的单个脉冲宽度约2μs,脉冲间隔约5μs。在这些脉冲作用下产生的喷溅过程也呈现相应的序列特性。在10^7W/cm^2的激光平均功率密度下,个别的尖峰脉冲功率密度可大于10^8W/cm^2。用分幅和扫描高速相机分别测量速度较低的喷溅物汽化运动图象,观察到了以7.7mm/μs的速度逆着入射激光方向传播的靶蒸汽和等离子体的喷溅过程,这相应于激光吸收波现象,并发现有屏蔽效应。 相似文献
113.
为了研究空间碎片对航天器防护结构的高速斜撞击损伤特性,采用二级轻气炮发射铝球弹丸,对铝Whipple防护结构进行高速斜撞击实验。弹丸直径为3.97 mm,撞击速度为1.14~5.35 km/s,撞击角度为0°~70°。实验得到了铝Whipple防护结构在不同撞击速度区间的后板损伤模式,分析了后板撞击损伤及弹坑分布特性,建立了预测铝球弹丸高速斜撞击铝Whipple防护结构时后板弹坑分布的经验公式。结果表明:在大角度斜撞击条件下,对于一定的撞击速度,铝Whipple防护结构的后板弹坑分布会出现两个区域;弹丸的撞击破碎临界速度将影响后板损伤随撞击角的变化关系;对于铝Whipple防护结构,存在使后板撞击损伤最严重的临界撞击角。 相似文献
114.
通过对铝Whipple防护结构进行扩展变形,设计出不锈钢网/铝板组合多冲击防护屏,并利用二级轻气炮对其进行高速撞击实验,撞击速度为3.93~4.25 km/s,弹丸直径为6.35 mm。分析了不同规格不锈钢网、不同间距组合以及网格间结膜对不锈钢网/铝板多冲击防护屏高速撞击防护性能的影响。结果表明:不锈钢网位于防护屏的最后层有利于碎片云的扩散;不锈钢网位于防护屏最前层不利于撞击粒子的初次破碎;丝网几何参数、防护层间距组合是提高不锈钢网/铝板多冲击防护屏高速撞击防护性能的重要参数;网格间结膜有助于弹丸撞击动能的吸收。 相似文献
115.
116.
EAST托卡马克装置外冷屏的热负荷分析 总被引:1,自引:1,他引:1
外真空杜瓦冷屏 (简称外冷屏 )是 EAST超导托卡马克核聚变装置的重要部件之一 ,它在处于室温下的外真空杜瓦与运行在 4 .5 K温度下的超导线圈之间形成了一道隔热的屏障 ,以保证装置能够稳定高效的运行。文中运用有限元分析软件 ANSYS对外冷屏封头、中筒、底座的传热情况做了计算与分析 ,以得到在氦气入口处压强为 5 .2 bar,温度为 80 K的情况下 ,外冷屏低温面板的详细设计方案 相似文献
117.
加力室隔热屏流场计算 总被引:1,自引:0,他引:1
加力室隔热屏流场计算赵坚行,刘全忠(南京航空航天大学动力工程系南京210016)关键词隔热屏,改值计算,紊流反应流1引言本文采用数值计算的方法模拟带有隔热屏、外冷却气流、尾喷口的加力室热态流场。计算中采用修正卜。紊流模型来预估粘性系数。燃烧模型采用卜... 相似文献
118.
119.
为研究一种改进型的波阻抗梯度材料防护结构Ti/Al/Mg结构的撞击极限,采 用 二 级 轻 气 炮 以3.0~8.0 km/s的速度对Ti/Al/Mg结构、Al/Mg结构和2A12结构开展了超高速撞击实验,建立了Ti/Al/Mg结构的撞击极限曲线。结果表明:高阻抗的钛合金表层能产生更高的冲击压力和温升,使弹丸充分破碎;在面密度相同的条件下,与Al/Mg结构和2A12结构相比,Ti/Al/Mg结构具有更强的防护性能。通过理论计算得到Ti/Al/Mg结构撞击极限曲线的区间转变速度小于7.0 km/s,但其实验撞击极限曲线上并未出现明显的区间转变,在实验速度范围内,撞击极限随着撞击速度的提升而增大,这与典型Whipple结构撞击极限曲线存在差异。 相似文献
120.
用混合方法计算双层屏蔽腔体窄缝耦合时,外腔体的窄缝耦合用传输线模型计算,内腔体的用磁偶极子模型计算。混合法可以求出双层屏蔽腔体内的场分布和屏蔽系数的分布规律,避免了传输线模型只能计算腔体中心线上的屏蔽系数而不能分析腔内横截面上耦合场分布规律的缺点。将得到的窄缝耦合的传输线模型和磁偶极子模型的计算结果与实测值和Micro-Stripes软件仿真值进行对比,验证了传输线和磁偶极子模型的有效性。混合方法给出了窄缝数量及腔体内不同观测点对屏蔽系数的影响,结果表明:双层屏蔽腔体的屏蔽效能明显优于单层屏蔽腔体;随着相同尺寸的窄缝数量的递增,腔体内的屏蔽系数递减;在与双层屏蔽腔体中心线垂直的横截面上,观测点屏蔽系数以中心线上点为中心,沿窄缝方向向两边递增,也就是离中心线越远,腔体内的耦合电场越弱,且混合法的速度明显快于软件计算速度,适合于高频范围的分析。 相似文献