全文获取类型
收费全文 | 10841篇 |
免费 | 223篇 |
国内免费 | 760篇 |
专业分类
化学 | 8879篇 |
晶体学 | 600篇 |
力学 | 686篇 |
综合类 | 9篇 |
数学 | 97篇 |
物理学 | 1553篇 |
出版年
2024年 | 21篇 |
2023年 | 86篇 |
2022年 | 53篇 |
2021年 | 50篇 |
2020年 | 93篇 |
2019年 | 115篇 |
2018年 | 99篇 |
2017年 | 144篇 |
2016年 | 217篇 |
2015年 | 200篇 |
2014年 | 279篇 |
2013年 | 385篇 |
2012年 | 1491篇 |
2011年 | 570篇 |
2010年 | 502篇 |
2009年 | 646篇 |
2008年 | 847篇 |
2007年 | 941篇 |
2006年 | 629篇 |
2005年 | 573篇 |
2004年 | 575篇 |
2003年 | 439篇 |
2002年 | 478篇 |
2001年 | 411篇 |
2000年 | 382篇 |
1999年 | 292篇 |
1998年 | 226篇 |
1997年 | 125篇 |
1996年 | 156篇 |
1995年 | 131篇 |
1994年 | 121篇 |
1993年 | 105篇 |
1992年 | 79篇 |
1991年 | 84篇 |
1990年 | 54篇 |
1989年 | 44篇 |
1988年 | 39篇 |
1987年 | 26篇 |
1986年 | 17篇 |
1985年 | 18篇 |
1984年 | 7篇 |
1983年 | 7篇 |
1982年 | 10篇 |
1981年 | 7篇 |
1980年 | 12篇 |
1979年 | 10篇 |
1975年 | 3篇 |
1973年 | 4篇 |
1969年 | 4篇 |
1966年 | 3篇 |
排序方式: 共有10000条查询结果,搜索用时 140 毫秒
121.
S. Anfang J. Grebe M. Mhlen B. Neumüller N. Faza W. Massa J. Magull K. Dehnicke 《无机化学与普通化学杂志》1999,625(8):1395-1400
Synthesis and Crystal Structures of the Phosphoraneiminato Complexes [AlCl2(NPEt3)]2, [GaI2(NPEt3)]2, and [GaI2(NPPh3)]2 [AlCl2(NPEt3)]2 ( 1 ) is made according to the known method by reaction of aluminium trichloride with the silylated phosphaneimine Me3SiNPEt3 in acetonitrile; it is isolated as colourless, moisture sensitive crystals. The phosphoraneiminato complexes [GaI2(NPEt3)]2 ( 2 ) and [GaI2(NPPh3)]2 ( 3 ), on the other hand, are obtained by redox reactions as pale yellow crystals; ( 2 ) of “gallium(I) iodide” with Me3SiNPEt3 in toluene and ( 3 ) of gallium with N-iodine triphenylphosphaneimine, INPPh3, in tetrahydrofuran. 1 and 3 are characterized spectroscopically and by crystal structure determinations; 2 is characterized only crystallographically. 1 : Space group Pbca, Z = 4; lattice dimensions at –70 °C: a = 1232.6(2), b = 1341.1(2), c = 1393.4(3) pm, R1 = 0.0315. 1 forms centrosymmetric molecules in which the Al atoms are linked via Al–N bonds of the two (NPEt3–) groups; with 185.0 and 184.4 pm these bonds are of almost the same lengths. 2 : Space group Pbca, Z = 4; lattice dimensions at –80 °C: a = 1380.0(1), b = 1311.0(1), c = 1429.1(1) pm, R1 = 0.0273. 2 crystallizes isotypically with 1 . The gallium atoms of the centrosymmetric Ga2N2 four-membered ring are connected with Ga–N distances of equal length (190.9 pm). 3 · THF: Space group P212121, Z = 2; lattice dimensions at –140 °C: a = 1494.6(1), b = 1536.3(1), c = 974.6(1) pm, R1 = 0.0382. 3 forms dimeric molecules in which the gallium atoms are linked via the N atoms of the (NPPh3–) groups to form a non-planar Ga2N2 four-membered ring of C2 symmetry with Ga–N bonds of equal lengths – within standard deviations – of 194.7 pm. The phosphoraneiminato groups are arranged in a synperiplanar way. 相似文献
122.
1-Ethoxycarbonyl-3-ferrocenyl-propane-1,3-dion and Ferrocene-1,1′bis(2,4-dioxobutanoic acid ethylester) as Ligands for Transition Metal Ions. Crystal Structure of Bis(1-ethoxycarbonyl-3-ferrocenyl-propane-1,3dionato)copper(II) The ligands 1-ethoxycarbonyl-3-ferrocenyl-propane-1,3-dion and ferrocene-1,1′-bis(2,4-dioxo-butanoic acid ethylester) have been prepared by reaction of acetylferrocene or 1,1′-diacetylferrocene and diethyl oxalate. They yield neutral chelates with CuII, NiII, ZnII, CoII, and MnII. The acid dissociation constants of the ligands and the stability constants of their metal complexes including FeII complexes are reported. The structure of bis(1-ethoxycarbonyl-3-ferrocenyl-propane-1,3-dionato)copper(II) was determined by X-ray structure analysis. A cis arrangement with a nearly square planar coordination sphere at the Cu atom is found. 相似文献
123.
Polyamide I1 (PAll) and its nanocomposites with different organoclay loadings were prepared by melt-compounding and subsequent pelletizing. The crystal phase transitions of PAl 1 and its clay nanocomposites were investigated by variable-temperature X-ray diffraction. It was found that the Brill transition of the nanocomposite was 20 K higher than that of the neat PAl 1 for both heating and cooling processes. The PAl 1 d-spacings of the nanocomposites were observed to be smaller than those of the neat PAl 1 for melt crystallization. The constraints imposed by the addition of layered clay, restricting the thermal expansion of the polymer chains, are probably responsible for such a reduction of the d-spacing. 相似文献
124.
痕量铁的光化学伏安分析法及其应用研究 总被引:1,自引:0,他引:1
在稀硫酸介质中及活化剂草酸存在下,痕量铁(Ⅲ)对结晶紫光化学褪色反应有强烈催化作用,结晶紫的光化学反应产物于-0.70产生一灵敏的2.5次微分级谱波。 相似文献
125.
Investigations of the Phase Relations in the Quaternary Systems Bi2O3/Bi2Ch /Bi2Ch (Ch = S, Se, Te) The stability ranges in the pseudobinary systems Bi2O2S/Bi2O2Se, Bi2O2S/Bi2O2Te and Bi2O2Se/Bi2O2Te have been studied by solid state and chemical transport reactions. A complete mixed crystal Bi2O2(TexSe1–x), 0 ≤ x ≤ 1 exists between the ternary compounds Bi2O2Te and Bi2O2Se. The thermal behaviour of the mixed crystal and the coexistence ranges have been determined by x‐ray and thermal analysis. 相似文献
126.
[{Cp*(OC)2Re}2(μ‐POH)], a Dinuclear Complex with a Bridging Hydroxiphosphinidene Ligand The reaction of [{Cp*(OC)2Re}4(μ4‐η1 : η1 : η1 : η1‐P2)] ( 1 ) with 0.1 m HCl gives [{Cp*(OC)2Re}2(μ‐POH)] ( 2 ), the X‐ray crystal structure of which reveals a dinuclear rhenium complex with a μ‐POH (hydroxiphosphinidene) ligand. 相似文献
127.
Iodoplumbates with Tetra‐ and Penta‐coordinated Pb2+ Ions In contrast to all known iodoplumbates with octahedrally coordinated Pb2+ ions, square pyramidal geometry is observed in the iodoplumbate chains of (Pr4N)[PbI3] ( 1 ) and [Mg(dmf)6][PbI3]2 ( 2 ), whereas the isolated anions in (Ph4P)2[Pb2I6] ( 3 ) and [Bu3N–(CH2)3–NBu3][PbI4] ( 4 ) contain tetra‐coordinated lead atoms. (Pr4N)[PbI3] ( 1 ): a = 910.86(6), b = 1221.46(7), c = 1907.7(1) pm, V = 2122.5(2) · 106 pm3, space group P212121; [Mg(dmf)6][PbI3]2 ( 2 ): a = 891.24(9), b = 1025.34(7), c = 1234.82(9) pm, α = 92.938(8), β = 106.457(8), γ = 98.100(7)°, V = 1066.4(2) · 106 pm3, space group P1; (Ph4P)2[Pb2I6] ( 3 ): a = 1174.5(1), b = 722.29(7), c = 3104.8(4) pm, β = 100.50(1)°, V = 2589.8(5) · 106 pm3, space group P21/n; [Bu3N–(CH2)3–NBu3][PbI4] ( 4 ): a = 2178.3(1), b = 1008.63(5), c = 1888.3(1) pm, β = 110.003(5)°, V = 3898.6(4) · 106 pm3, space group P2/c. 相似文献
128.
Syntheses and Crystal Structures of the Nitrido‐chloro‐molybdates [Mg(THF)4{NMoCl4(THF)}2] · 4 CH2Cl2 and [Li(12‐Crown‐4)(NMoCl4)]2 · 2 CH2Cl2 Both the title compounds as well as [Li(12‐crown‐4)2]+MoNCl4– were made from MoNCl3 and the chlorides MgCl2 and LiCl, respectively, in dichloromethane suspensions in the presence of tetrahydrofuran and 12‐crown‐4, respectively. They form orange‐red moisture‐sensitive crystals, which were characterized by their IR spectra and partly by crystal structure analyses. [Mg(THF)4{NMoCl4(THF)}2] · 4 CH2Cl2 ( 1 ): space group C2/m, Z = 2, lattice dimensions at –50 °C: a = 1736.6(1), b = 1194.8(1), c = 1293.5(2) pm; β = 90.87(1)°; R1 = 0.037. In 1 the magnesium ion is coordinated octahedrally by the oxygen atoms of the four THF molecules and in trans‐position by the nitrogen atoms of the two [N≡MoCl4(THF)]– ions. [Li(12‐crown‐4)(NMoCl4)]2 · 2 CH2Cl2 ( 2 ): space group P 1, Z = 1, lattice dimensions at –70 °C: a = 930.4(1), b = 957.9(1), c = 1264.6(1) pm; α = 68.91(1)°, β = 81.38(1)°, γ = 63.84(1)°; R1 = 0.0643. 2 forms a centrosymmetric ion ensemble in the dimeric cation of which, i. e. [Li(12‐crown‐4)]22+, the lithium ions on the one hand are connected to the four oxygen atoms each of the crown ether molecules in a way not yet known; and in addition, each of the lithium ions enters into a intermolecular Li–O bond with neighboring crown ether molecules under formation of a Li2O2 four‐membered ring. The two N≡MoCl4– counterions are loosely coordinated to one oxygen atom each of the crown ether molecules with Mo–O distances of 320.2 pm. 相似文献
129.
Phosphoraneiminato Cluster of Iron. The Crystal Structures of [FeCl(NPEt3)]4, [Fe(C=C–SiMe3)(NPEt3)]4, and [Fe3Cl4{NP(NMe2)3}3] The reaction of iron dichloride with the silylated phosphaneimine Me3SiNPEt3 in the presence of potassium fluoride at 165 ?C leads to the phosphoraneiminato complex [FeCl(NPEt3)]4 ( 1 ). Compound 1 forms black, moisture and oxygen sensitive crystals. According to the crystal structure analysis 1 has a heterocubane structure, in which the iron and the nitrogen atoms of the NPEt3– groups occupy the corners of a distorted cube and form Fe–N–Fe bond angles of 83.1? and N–Fe–N angles of 96.5?. This results in significantly short Fe…Fe contacts of 272.9 pm. The results of magnetic susceptibility measurements in the range of temperatures from 1.8 to 293 K and the 57Fe‐Mössbauer spectra in the range of temperatures from 2 to 300 K are reported. Compound 1 reacts with the lithiated acetylenes LiC=C–CMe3 and LiC=C–SiMe3 in n‐hexane to form the iron‐organic derivatives [Fe(C=C–R)(NPEt3)]4 [R = CMe3 ( 2 a ), R = SiMe3 ( 2 b )] keeping the heterocubane structure. Compounds 2 a and 2 b form crystals which are very reactive and also black. According to the crystal structure analysis 2 b has a Fe4N4 heterocubane structure which is less distorted than that in 1 with bond angles Fe–N–Fe of 85.5? and N–Fe–N of 94.2?. This leads to the longer Fe…Fe contacts of 281.4 pm. With the dimethylamido derivative Me3SiNP(NMe2)3 iron dichloride reacts under conditions similar to those in the synthesis of 1 to form the dark green mixed‐valenced FeII/FeIII cluster [Fe3Cl4{NP(NMe2)3}3] ( 3 ). According to the crystal structure analysis the three iron atoms in 3 are connected via one μ3‐N atom of a NP(NMe2)3– ligand, via two μ‐N atoms of the two remaining phosphoraneiminato ligands, and via one μ‐Cl atom to form an incomplete heterocubane skeleton. 相似文献
130.
(NH4)2[Mo6Cl14] · H2O ( 1 ) was prepared from reactions of MoCl2 in ethanol with aqueous NH4Cl solution. It crystallizes in the monoclinic space group I2/a (no. 15), Z = 4 with a = 912.3(1), b = 1491.2(2), c = 1724.8(2) pm, β = 92.25(1)°; R1 = 0.023 (based on F values) and wR2 = 0.059 (based on F2 values), for all measured X‐ray reflections. The structure of the cluster anion can be given as [(Mo6Cl)Cl]2– (i = inner, a = outer ligands). Thermal stability studies show that 1 loses crystal water followed by the loss of NH4Cl above 350 °C to yield MoCl2. The water‐free compound (NH4)2[Mo6Cl14] ( 2 ) was synthesized by solid state reaction of MoCl2 and NH4Cl in a sealed quartz ampoule at 270 °C. No single‐crystals could be obtained. Decompositions of 1 and 2 under nitrogen and argon exhibited the loss of NH4Cl at about 350 °C. Decomposition under NH3 resulted in the formation of MoN and Mo2N at 540 °C and 720 °C, respectively. 相似文献