首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41108篇
  免费   5347篇
  国内免费   4164篇
化学   11094篇
晶体学   965篇
力学   9767篇
综合类   569篇
数学   14720篇
物理学   13504篇
  2024年   102篇
  2023年   467篇
  2022年   836篇
  2021年   947篇
  2020年   1206篇
  2019年   1037篇
  2018年   1059篇
  2017年   1478篇
  2016年   1654篇
  2015年   1307篇
  2014年   2122篇
  2013年   2948篇
  2012年   2517篇
  2011年   2895篇
  2010年   2448篇
  2009年   2705篇
  2008年   2597篇
  2007年   2595篇
  2006年   2390篇
  2005年   2223篇
  2004年   1899篇
  2003年   1708篇
  2002年   1525篇
  2001年   1279篇
  2000年   1201篇
  1999年   1083篇
  1998年   1000篇
  1997年   847篇
  1996年   698篇
  1995年   589篇
  1994年   546篇
  1993年   442篇
  1992年   452篇
  1991年   345篇
  1990年   273篇
  1989年   211篇
  1988年   177篇
  1987年   128篇
  1986年   87篇
  1985年   114篇
  1984年   108篇
  1983年   53篇
  1982年   71篇
  1981年   50篇
  1980年   29篇
  1979年   43篇
  1978年   31篇
  1977年   38篇
  1976年   13篇
  1957年   11篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
The mixing performance of a multi-bladed baffle inserted into a traditional Gallay tote blender is explored by graphic processing unit-based discrete element method software. The mixing patterns and rates are investigated for a binary mixture, represented by two different colors, under several loading profiles. The baffle effectively enhances the convective mixing both in the axial and radial directions, because of the disturbance it causes to the initial flowing layer and solid-body zone, compared with a blender without a baffle. The axial mixing rate is affected by the gap between the baffle and the wall on the left and right sides, and an optimal blade length corresponds to the maximum mixing rate. However, the radial mixing rate increases with the blade length almost monotonically.  相似文献   
992.
气凝胶是轻质开孔的介孔材料,由于其特殊的性质,如低密度(0.003~0.5g/cm3)、高孔隙率(70%~99.8%)、低介电常数(~1.1)、低热导率(最低为0.012W/(m·K))和高比表面积(100~1600m2/g),因此可应用于隔热材料、隔音材料、催化剂载体、药物缓释材料、低介电材料、吸附剂等。聚酰亚胺是一类重要的高性能聚合物,近些年,聚酰亚胺气凝胶备受重视。本文综述了现有多种聚酰亚胺气凝胶的制备方法及其优缺点,并对今后的研究工作进行了展望。  相似文献   
993.
Catechin is found in several natural sources, as Eugenia dysenterica and Syzygium cumini extracts. Its antioxidant and UV‐protective properties suggest a potential use in cosmetic and dermatological formulations. A simple analytical method capable of giving support to experiments performed along the development of topical formulations containing this natural substance (i.e. drug assay, skin permeation and stability studies), however, is still needed. Thus, this work aimed to develop and validate a selective HPLC method for catechin determination during the development of topical formulations. Separation was achieved using an RP‐C18 column (300 × 3.9 mm; 10 μm), with a mobile phase of methanol–phosphoric acid 0.01 m (15: 85, v/v), a flow rate of 0.8 mL/min, temperature set at 40°C and UV detection at 230 nm. The method was linear in a range from 0.5 to 10.0 μg/mL (r = 0.9998), precise with an overall variation coefficient of 5.5% and accurate with catechin recovery from the skin layers >85%. Additionally, the method was sensitive (limit of detection, 0.109 μg/mL; limit of quantification, 0.342 μg/mL) and selective against plant extracts, skin matrices and formulation interferents, as well as catechin degradation products. It was also robust regarding both methodology parameters and analytical stability.  相似文献   
994.
The properties of the transfer-matrix of U(1) lattice gauge theory in the Fourier basis are explored. Among other statements it is shown: (i) the transfer-matrix is block-diagonal, (ii) all consisting vectors of a block are known based on an arbitrary block vector, (iii) the ground-state belongs to the zero-mode's block. The emergence of maximum-points in matrix-elements as functions of the gauge coupling is clarified. Based on explicit expressions for the matrix-elements we present numerical results as tests of our statements.  相似文献   
995.
In this paper, we present a finite element method with a residual‐based artificial viscosity for simulation of turbulent compressible flow, with adaptive mesh refinement based on a posteriori error estimation with sensitivity information from an associated dual problem. The artificial viscosity acts as a numerical stabilization, as shock capturing, and as turbulence capturing for large eddy simulation of turbulent flow. The adaptive method resolves parts of the flow indicated by the a posteriori error estimates but leaves shocks and turbulence under‐resolved in a large eddy simulation. The method is tested for examples in 2D and 3D and is validated against experimental data. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
996.
Recently, silica nanoparticles (SNPs) have drawn widespread attention due to their applications in many emerging areas because of their tailorable morphology. During the last decade, remarkable efforts have been made on the investigations for novel processing methodologies to prepare SNPs, resulting in better control of the size, shape, porosity and significant improvements in the physio-chemical properties. A number of techniques available for preparing SNPs namely, flame spray pyrolysis, chemical vapour deposition, micro-emulsion, ball milling, sol-gel etc. have resulted, a number of publications. Among these, preparation by sol-gel has been the focus of research as the synthesis is straightforward, scalable and controllable. Therefore, this review focuses on the recent progress in the field of synthesis of SNPs exhibiting ordered mesoporous structure, their distribution pattern, morphological attributes and applications. The mesoporous silica nanoparticles (MSNPs) with good dispersion, varying morphology, narrow size distribution and homogeneous porous structure have been successfully prepared using organic and inorganic templates. The soft template assisted synthesis using surfactants for obtaining desirable shapes, pores, morphology and mechanisms proposed has been reviewed. Apart from single template, double and mixed surfactants, electrolytes, polymers etc. as templates have also been intensively discussed. The influence of reaction conditions such as temperature, pH, concentration of reagents, drying techniques, solvents, precursor, aging time etc. have also been deliberated. These MSNPs are suitable for a variety of applications viz., in the drug delivery systems, high performance liquid chromatography (HPLC), biosensors, cosmetics as well as construction materials. The applications of these SNPs have also been briefly summarized.  相似文献   
997.
On the basis of the Helmholtz decomposition, a grid‐free numerical scheme is provided for the solution of unsteady flow in hydraulic turbines. The Lagrangian vortex method is utilized to evaluate the convection and stretch of the vorticity, and the BEM is used to solve the Neumann problem to define the potential flow. The no‐slip boundary condition is satisfied by generating vortex sticks at the solid surface. A semi‐analytical regularization technique is applied to evaluate the singular boundary surface integrals of the potential velocity and its gradients accurately. The fast multipole method was extended to evaluate the velocity and velocity gradients induced by the discretized vortex blobs in the Lagrangian vortex method. The successful simulation for the unsteady flow through a hydraulic turbine's runner has manifested the effectiveness of the proposed method. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
998.
《合成通讯》2013,43(8):1067-1076
Abstract

The Gabriel–Cromwell method is applied successfully in the synthesis of ferrocenyl‐substituted aziridines. Acryloyl‐ and crotonoylferrocenes are brominated first and then reacted with benzylamine, diisopropylamine, and furfurylamine in the presence of triethylamine. The aziridines are obtained in more than 90% isolated yields.  相似文献   
999.
1000.
An integrated finite element method (FEM) is proposed to simulate incompressible two‐phase flows with surface tension effects, and three different surface tension models are applied to the FEM to investigate spurious currents and temporal stability. A Q2Q1 element is adopted to solve the continuity and Navier–Stokes equations and a Q2‐iso‐Q1 to solve the level set equation. The integrated FEM solves pressure and velocity simultaneously in a strongly coupled manner; the level set function is reinitialized by adopting a direct approach using interfacial geometry information instead of solving a conventional hyperbolic‐type equation. In addition, a consistent continuum surface force (consistent CSF) model is utilized by employing the same basis function for both surface tension and pressure variables to damp out spurious currents and to estimate the accurate pressure distribution. The model is further represented as a semi‐implicit manner to improve temporal stability with an increased time step. In order to verify the accuracy and robustness of the code, the present method is applied to a few benchmark problems of the static bubble and rising bubble with large density and viscosity ratios. The Q2Q1‐integrated FEM coupled with the semi‐implicit consistent CSF demonstrates the significantly reduced spurious currents and improved temporal stability. The numerical results are in good qualitative and quantitative agreements with those of the existing studies. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号