首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   665篇
  免费   22篇
  国内免费   6篇
化学   57篇
力学   415篇
综合类   2篇
数学   55篇
物理学   164篇
  2023年   7篇
  2022年   10篇
  2021年   18篇
  2020年   16篇
  2019年   12篇
  2018年   17篇
  2017年   19篇
  2016年   30篇
  2015年   18篇
  2014年   39篇
  2013年   74篇
  2012年   26篇
  2011年   60篇
  2010年   38篇
  2009年   50篇
  2008年   42篇
  2007年   38篇
  2006年   41篇
  2005年   27篇
  2004年   21篇
  2003年   13篇
  2002年   18篇
  2001年   7篇
  2000年   8篇
  1999年   6篇
  1998年   10篇
  1997年   3篇
  1996年   2篇
  1995年   6篇
  1994年   2篇
  1993年   1篇
  1992年   6篇
  1991年   4篇
  1989年   1篇
  1987年   2篇
  1971年   1篇
排序方式: 共有693条查询结果,搜索用时 15 毫秒
51.
A mathematical model has been developed for the simulation of gas-particle flow and fluid catalytic cracking in downer reactors. The model takes into account both cracking reaction and flow behavior through a four-lump reaction kinetics coupled with two-phase turbulent flow. The prediction results show that the relatively large change of gas velocity affects directly the axial distribution of solids velocity and void fraction, which significantly interact with the chemical reaction. Furthermore, model simulations are carried out to determine the effects of such parameters on product yields, as bed diameter, reaction temperature and the ratio of catalyst to oil, which are helpful for optimizing the yields of desired products. The model equations are coded and solved on CFX4.4.  相似文献   
52.
并行计算机和计算流体力学并行算法   总被引:6,自引:0,他引:6  
Roose.  D 邹辉 《力学进展》1998,28(1):111-135
对研制计算流体力学高效并行算法及软件具有重要意义的并行计算问题提出了导引性的看法.首先综述了并行计算机的主要设计特征并简要描述了市场现有的几种并行系统.接着介绍了一些有关研制并行算法及评价其性能的重要概念.然后讨论了如何使分布式内存并行计算机的运行负载不平衡和通信开销达到最小.最后列举了计算流体力学某些算例的测试结果.本文的重点是结构网格和分程序结构网格的应用,但这些概念和方法对非结构网格同样有效  相似文献   
53.
Shock waves from an open-ended shock tube with different shapes   总被引:1,自引:0,他引:1  
Q. Yu  H. Grönig 《Shock Waves》1996,6(5):249-258
A new method for decreasing the attenuation of a shock wave emerging from an open-ended shock tube exit into a large free space has been developed to improve the shock wave technique for cleaning deposits on the surfaces in industrial equipments by changing the tube exit geometry. Three tube exits (the simple tube exit, a tube exit with ring and a coaxial tube exit) were used to study the propagation processes of the shock waves. The detailed flow features were experimentally investigated by use of a two-dimensional color schlieren method and by pressure measurements. By comparing the results for different tube exits, it is shown that the expansion of the shock waves near the mouth can be restricted by using the tube exit with ring or the coaxial tube exit. Thus, the attenuation of the shock waves is reduced. The time histories of overpressure have illustrated that the best results are obtained for the coaxial tube exit. But the pressure signals for the tube exit with ring showed comparable results with the advantage of a relatively simple geometry. The flow structures of diffracting shock waves have also been simulated by using an upwind finite volume scheme based on a high order extension of Godunov's method as well as an adaptive unstructured triangular mesh refinement/unrefinement algorithm. The numberical results agree remarkably with the experimental ones.  相似文献   
54.
In this study a framework consisting of a computational fluid dynamics simulation coupled to a population balance model for the modeling of emulsion polymerizations is proposed. The combined approach is used to understand the impact of changing length and time scales, as well as mixing conditions on the particle size distribution (PSD) of a polymer latex under different conditions. It is shown that the effect of agitation rate can have a profound impact on the distribution of ionic species in the reactor, and thus on the evolution of the PSD.

  相似文献   

55.
A mathematical model has been developed for the simulation of gas-particle flow and fluid catalytic cracking in downer reactors. The model takes into account both cracking reaction and flow behavior through a four-lump reaction kinetics coupled with two-phase turbulent flow. The prediction results show that the relatively large change of gas velocity affects directly the axial distribution of solids velocity and void fraction, which significantly interact with the chemical reaction. Furthermore, model simulations are carried out to determine the effects of such parameters on product yields, as bed diameter, reaction temperature and the ratio of catalyst to oil, which are helpful for optimizing the yields of desired products. The model equations are coded and solved on CFX4.4.  相似文献   
56.
增殖剂球床是聚变堆或混合堆产氚包层可选结构之一,准确把握增殖剂球床中载带气体的流动特性有助于提高对球床载氚过程的认识并优化包层设计。采用离散元程序PFC3D模拟增殖剂小球的填充行为,在球床内不同位置随机截取不同尺寸的控制体,利用布尔运算中的"差集"得到孔隙范围,建立孔隙分布的三维几何模型,进一步划分网格并用计算流体力学(CFD)方法求解,得出控制体上单位长度的压降以及单元体内的速度分布特征,计算结果发现载带气体速度分布与γ分布很类似,且只要选取恰当的控制体,通过计算流体力学方法可以较好地分析整个球床孔隙内流体的流动,有利于进一步研究载氚及相关过程。  相似文献   
57.
In order to improve the understanding of counter-current two-phase flows and to validate new physical models, CFD simulations of 1/3rd scale model of the hot leg of a German Konvoi PWR with rectangular cross section was performed. Selected counter-current flow limitation (CCFL) experiments at the Helmholtz–Zentrum Dresden–Rossendorf (HZDR) were calculated with ANSYS CFX 12.1 using the multi-fluid Euler–Euler modeling approach. The transient calculations were carried out using a gas/liquid inhomogeneous multiphase flow model coupled with a k-ω turbulence model for each phase. In the simulation, the surface drag was approached by a new correlation inside the Algebraic Interfacial Area Density (AIAD) model. The AIAD model allows the detection of the morphological form of the two phase flow and the corresponding switching via a blending function of each correlation from one object pair to another. As a result this model can distinguish between bubbles, droplets and the free surface using the local liquid phase volume fraction value. A comparison with the high-speed video observations shows a good qualitative agreement. The results indicated that quantitative agreement of the CCFL characteristics between calculation and experimental data was obtained. The goal is to provide an easy usable AIAD framework for all Code users, with the possibility of the implementation of their own correlations.  相似文献   
58.
Computational approach for a pair of bubble coalescence process   总被引:1,自引:0,他引:1  
The coalescence of bubbles has great value in mineral recovery and oil industry. In this paper, two co-axial bubbles rising in a cylinder is modelled to study the coalescence of bubbles for four computational experimental test cases. The Reynolds’ (Re) number is chosen in between 8.50 and 10, Bond number, Bo ∼4.25-50, Morton number, M 0.0125-14.7. The viscosity ratio (μr) and density ratio (ρr) of liquid to bubble are kept constant (100 and 850 respectively). It was found that the Bo number has significant effect on the coalescence process for constant Re, μr and ρr. The bubble-bubble distance over time was validated against published experimental data. The results show that VOF approach can be used to model these phenomena accurately. The surface tension was changed to alter the Bo and density of the fluids to alter the Re and M, keeping the μr and ρr the same. It was found that for lower Bo, the bubble coalesce is slower and the pocket at the lower part of the leading bubble is less concave (towards downward) which is supported by the experimental data.  相似文献   
59.
An extensive experimental database comprising air–water as well as steam-water upwards vertical pipe flows for a pressure up to 6.5 MPa was used to investigate the effect of the lateral lift force on turbulent poly-dispersed flows with medium or high gas volume fraction. It was clearly shown that the lift force plays an important role also in such flows. Several effects such as bubble coalescence and breakup as well as fast rising large bubbles which push small bubbles towards the pipe wall superpose the effect of the lift force but can be separated from this effect. The critical bubble diameter, at which the lift force changes its sign, predicted by using Tomiyama’s correlation agrees well with experimental data obtained for turbulent air–water and steam-water flows with medium and high void fraction and a broad spectrum of bubbles sizes. The values for this critical bubble diameter are confirmed by the experimental data within the frame of the uncertainty of the data. Consequences of the action of the lateral lift force on flow structures in different flow situations are discussed. From the investigations it can be concluded that the lift force including the bubble size dependent change of its sign should be considered in a proper numerical 2D or 3D-simulation on flows in which bubbles in the range of several millimeters are present.  相似文献   
60.
The flow field of a flapping airfoil in Low Reynolds Number (LRN) flow regime is associated with complex nonlinear vortex shedding and viscous phenomena. The respective fluid dynamics of such a flow is investigated here through Computational Fluid Dynamics (CFD) based on the Finite Volume Method (FVM). The governing equations are the unsteady, incompressible two-dimensional Navier-Stokes (N-S) equations. The airfoil is a thin ellipsoidal geometry performing a modified figure-of-eight-like flapping pattern. The flow field and vortical patterns around the airfoil are examined in detail, and the effects of several unsteady flow and system parameters on the flow characteristics are explored. The investigated parameters are the amplitude of pitching oscillations, phase angle between pitching and plunging motions, mean angle of attack, Reynolds number (Re), Strouhal number (St) based on the translational amplitudes of oscillations, and the pitching axis location (x/c). It is shown that these parameters change the instantaneous force coefficients quantitatively and qualitatively. It is also observed that the strength, interaction, and convection of the vortical structures surrounding the airfoil are significantly affected by the variations of these parameters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号