首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1774篇
  免费   184篇
  国内免费   101篇
化学   1901篇
晶体学   2篇
力学   33篇
综合类   2篇
数学   11篇
物理学   110篇
  2024年   3篇
  2023年   17篇
  2022年   42篇
  2021年   45篇
  2020年   93篇
  2019年   46篇
  2018年   49篇
  2017年   41篇
  2016年   89篇
  2015年   97篇
  2014年   85篇
  2013年   87篇
  2012年   78篇
  2011年   98篇
  2010年   90篇
  2009年   118篇
  2008年   138篇
  2007年   96篇
  2006年   114篇
  2005年   105篇
  2004年   89篇
  2003年   69篇
  2002年   55篇
  2001年   34篇
  2000年   22篇
  1999年   31篇
  1998年   30篇
  1997年   28篇
  1996年   42篇
  1995年   22篇
  1994年   19篇
  1993年   27篇
  1992年   16篇
  1991年   7篇
  1990年   5篇
  1989年   9篇
  1988年   4篇
  1987年   10篇
  1986年   3篇
  1984年   2篇
  1977年   2篇
  1975年   1篇
  1971年   1篇
排序方式: 共有2059条查询结果,搜索用时 15 毫秒
141.
The development of polymeric anion‐exchange membranes (AEMs) combining high ion conductivity and long‐term stability is a major challenge for materials chemistry. AEMs with regularly distributed fixed cationic groups, based on the formation of microporous polymers containing the V‐shape rigid Tröger's base units, are reported for the first time. Despite their simple preparation, which involves only two synthetic steps using commercially available precursors, the polymers provide AEMs with exceptional hydroxide conductivity at relatively low ion‐exchange capacity, as well as a high swelling resistance and chemical stability. An unprecedented hydroxide conductivity of 164.4 mS cm?1 is obtained at a relatively a low ion‐exchange capacity of 0.82 mmol g?1 under optimal operating conditions. The exceptional anion conductivity appears related to the intrinsic microporosity of the charged polymer matrix, which facilitates rapid anion transport.  相似文献   
142.
Extraction of lithium ions from salt‐lake brines is very important to produce lithium compounds. Herein, we report a new approach to construct polystyrene sulfonate (PSS) threaded HKUST‐1 metal–organic framework (MOF) membranes through an in situ confinement conversion process. The resulting membrane PSS@HKUST‐1‐6.7, with unique anchored three‐dimensional sulfonate networks, shows a very high Li+ conductivity of 5.53×10?4 S cm?1 at 25 °C, 1.89×10?3 S cm?1 at 70 °C, and Li+ flux of 6.75 mol m?2 h?1, which are five orders higher than that of the pristine HKUST‐1 membrane. Attributed to the different size sieving effects and the affinity differences of the Li+, Na+, K+, and Mg2+ ions to the sulfonate groups, the PSS@HKUST‐1‐6.7 membrane exhibits ideal selectivities of 78, 99, and 10296 for Li+/Na+, Li+/K+, Li+/Mg2+ and real binary ion selectivities of 35, 67, and 1815, respectively, the highest ever reported among ionic conductors and Li+ extraction membranes.  相似文献   
143.
Metal–organic frameworks (MOFs) are widely used as porous materials in the fields of adsorption and separation. However, their practical application is largely hindered by limitations to their processability. Herein, new UiO‐66‐Urea‐based flexible membranes with MOF loadings of 50 ( 1 ), 60 ( 2 ), and 70 wt % ( 3 ) were designed and prepared by post‐synthetic polymerization of UiO‐66‐NH2 nanoparticles and a polyurethane oligomer under mild conditions. The adsorption behavior of membrane 3 towards four hydrophilic dyes, namely, eosin Y (EY), rhodamine B (RB), malachite green (MG), and methylene blue (MB), in aqueous solution was studied in detail. It exhibits strong adsorption of EY and RB but weak adsorption of MG and MB in aqueous solution. Owing to the selective adsorption of these hydrophilic dyes, membrane 3 can remove EY and RB from aqueous solution and completely separate EY/MB, RB/MG, and RB/MB mixtures in aqueous solution. In addition, the membrane is uniformly textured, easily handled, and can be reused for dye adsorption and separation.  相似文献   
144.
This paper examines the effects of four different polar headgroups on small‐ion membrane permeability from liposomes comprised of Archaea‐inspired glycerolmonoalkyl glycerol tetraether (GMGT) lipids. We found that the membrane‐leakage rate across GMGT lipid membranes varied by a factor of ≤1.6 as a function of headgroup structure. However, the leakage rates of small ions across membranes comprised of commercial bilayer‐forming 1‐palmitoyl‐2‐oleoyl‐sn‐glycerol (PO) lipids varied by as much as 32‐fold within the same series of headgroups. These results demonstrate that membrane leakage from GMGT lipids is less influenced by headgroup structure, making it possible to tailor the structure of the polar headgroups on GMGT lipids while retaining predictable leakage properties of membranes comprised of these tethered lipids.  相似文献   
145.
Polymeric membranes are important tools for intensifying separation processes in chemical industries, concerning strategic tasks such as CO2 sequestration, H2 production, and water supply and disposal. Mixed‐matrix and supported membranes have been widely developed; recently many of them have been based on metal–organic frameworks (MOFs). However, most of the impacts MOFs have within the polymer matrix have yet to be determined. The effects related to thermal behavior arising from the combination of MOF ZIF‐8 and polysulfone have now been quantified. The catalyzed oxidation of the polymer is strongly affected by the MOF crystal size and distribution inside the membrane. A 16 wt % 140 nm‐sized ZIF‐8 loading causes a 40 % decrease in the observed activation energy of the polysulfone oxidation that takes place at a temperature (545 °C) 80 °C lower than in the raw polymer (625 °C).  相似文献   
146.
利用电子束引发预辐射接枝技术,在聚全氟乙丙烯(FEP)薄膜上接枝丙烯酸(AA)和对苯乙烯磺酸钠(SSS),制备一种含羧酸基团和磺酸基团的阳离子交换膜,详细研究了反应温度、单体总浓度、pH值变化、辐照气氛及添加剂对接枝率的影响规律,明确了实验条件与接枝率的对应关系。FTIR测试证明了接枝产物是全氟乙丙烯和丙烯酸、对苯乙烯磺酸钠的接枝共聚物。  相似文献   
147.
Leaching of palladium species from Pd nanoparticles under C--C coupling conditions was observed for both Heck and Suzuki reactions by using a special membrane reactor. The membrane allows the passage of palladium atoms and ions, but not of species larger than 5 nm. Three possible mechanistic scenarios for palladium leaching were investigated with the aim of identifying the true catalytic species. Firstly, we examined whether or not palladium(0) atoms could leach from clusters under non-oxidising conditions. By using our membrane reactor, we proved that this indeed happens. We then investigated whether or not small palladium(0) clusters could in fact be the active catalytic species by analysing the reaction composition and the palladium species that diffused through the membrane. Neither TEM nor ICP analysis supported this scenario. Finally, we tested whether or not palladium(II) ions could be leached in the presence of PhI by oxidative addition and the formation of [Pd(II)ArI] complexes. Using mass spectrometry, UV-visible spectroscopy and 13C NMR spectroscopy, we observed and monitored the formation and diffusion of these complexes, which showed that the first and the third mechanistic scenarios were both possible, and were likely to occur simultaneously. Based on these findings, we maintain that palladium nanoparticles are not the true catalysts in C--C coupling reactions. Instead, catalysis is carried out by either palladium(0) atoms or palladium(II) ions that leach into solution.  相似文献   
148.
This study presents a methodology for an in-depth characterization of six representative commercial nanofiltration membranes. Laboratory-made polyethersulfone membranes are included for reference. Besides the physical characterization [molecular weight cut-off (MWCO), surface charge, roughness and hydrophobicity], the membranes are also studied for their chemical composition [attenuated total reflectance Fourier spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS)] and porosity [positron annihilation spectroscopy (PAS)]. The chemical characterization indicates that all membranes are composed of at least two different layers. The presence of an additional third layer is proved and studied for membranes with a polyamide top layer. PAS experiments, in combination with FIB (focused ion beam) images, show that these membranes also have a thinner and a less porous skin layer (upper part of the top layer). In the skin layer, two different pore sizes are observed for all commercial membranes: a pore size of 1.25-1.55 angstroms as well as a pore size of 3.20-3.95 angstroms (both depending on the membrane type). Thus, the pore size distribution in nanofiltration membranes is bimodal, in contrast to the generally accepted log-normal distribution. Although the pore sizes are rather similar for all commercial membranes, their pore volume fraction and hence their porosity differ significantly.  相似文献   
149.
We have used porous anodised Al(2)O(3) membranes as inert matrix for constructing and organizing spatially ternary donor/conductor/acceptor (DCA) systems exhibiting photovoltaic cell activity on the micrometric-length scale. These DCA triads were built stepwise by first growing a conducting polymer inside the membrane pores, thus forming nanorods that completely fill the internal pore space of the membrane. Then, an electron donor and an electron acceptor were adsorbed one on each side of the membrane, so that they were separated by a distance equal to the membrane thickness (ca. 60 microm), but electronically connected through the conductive polymer. When this device was placed between two electrodes and irradiated with visible light, electrons jumped from the donor molecule, crossed the membrane from side to side through the conductive polymer (a journey of about 60 microm!) until they finally reach the acceptor molecule. In so doing, an electric voltage was generated between the two electrodes, capable of maintaining an electric current flow from the membrane to an external circuit. Our DCA device constitutes the proof of a novel concept of photovoltaic cells, since it is based on the spatial organization at the micrometric scale of complementary, but not covalently linked, electron-donor and electron-acceptor organic species. Thus, our cell is based in translating photoinduced electron transfer between donors and acceptors, which is known to occur at the molecular nanometric scale, to the micrometric range in a spatially organised system. In addition our cell does not need the use of liquid electrolytes in order to operate, which is one of the main drawbacks in dye-sensitised solar cells.  相似文献   
150.
The 2000–2006 achievements in the field of synthesis, property examination, and application of proton-exchange membranes are reviewed on the basis of more than 120 papers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号