首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1721篇
  免费   222篇
  国内免费   100篇
化学   1888篇
晶体学   2篇
力学   33篇
综合类   2篇
数学   11篇
物理学   107篇
  2024年   1篇
  2023年   15篇
  2022年   32篇
  2021年   45篇
  2020年   93篇
  2019年   46篇
  2018年   49篇
  2017年   41篇
  2016年   89篇
  2015年   96篇
  2014年   85篇
  2013年   87篇
  2012年   78篇
  2011年   98篇
  2010年   90篇
  2009年   118篇
  2008年   138篇
  2007年   96篇
  2006年   113篇
  2005年   105篇
  2004年   89篇
  2003年   69篇
  2002年   55篇
  2001年   34篇
  2000年   22篇
  1999年   31篇
  1998年   30篇
  1997年   28篇
  1996年   42篇
  1995年   22篇
  1994年   19篇
  1993年   27篇
  1992年   16篇
  1991年   7篇
  1990年   5篇
  1989年   9篇
  1988年   4篇
  1987年   10篇
  1986年   3篇
  1984年   2篇
  1977年   2篇
  1975年   1篇
  1971年   1篇
排序方式: 共有2043条查询结果,搜索用时 62 毫秒
111.
Macroencapsulation of islets of Langerhans is a promising strategy for transplantation of insulin‐producing cells in the absence of immunosuppression to treat type 1 diabetes. Hollow fiber membranes are of interest there because they offer a large surface‐to‐volume ratio and can potentially be retrieved or refilled. However, current available fibers have limitations in exchange of nutrients, oxygen, and delivery of insulin potentially impacting graft survival. Here, multibore hollow fibers for islets encapsulation are designed and tested. They consist of seven bores and are prepared using nondegradable polymers with high mechanical stability and low cell adhesion properties. Human islets encapsulated there have a glucose induced insulin response (GIIS) similar to nonencapsulated islets. During 7 d of cell culture in vitro, the GIIS increases with graded doses of islets demonstrating the suitability of the microenvironment for islet survival. Moreover, first implantation studies in mice demonstrate device material biocompatibility with minimal tissue responses. Besides, formation of new blood vessels close to the implanted device is observed, an important requirement for maintaining islet viability and fast exchange of glucose and insulin. The results indicate that the developed fibers have high islet bearing capacity and can potentially be applied for a clinically applicable bioartificial pancreas.  相似文献   
112.
The anion exchange membranes (AEMs) with both high ionic conductivity and alkali stability are always the research focus of the AEM fuel cells. Here, a novel nonplanar polymer for AEMs manufacture, mPBI‐TP‐x‐R, with excellent hydroxide stability and satisfactory processability is reported for the first time. The serial mPBI‐TP‐x resins with steric hindrance were prepared by copolymerization among 3,3′,4,4′‐tetraaminobiphenyl, isophthalic acid and tetraphenyl‐terephthalic acid (TP) in different ratios under microwave condensation. The copolymers mPBI‐TP‐x were quaternized at N1/N3‐sites of benzimidazole unit in backbone with alkyl groups (R?CH3, C2H5, n‐C3H7, or n‐C4H9) to prepare soluble ionomers, and the corresponding membranes in hydroxyl ion form were prepared by a solution casting method and subsequent ion‐exchange process. The chemical structure of all membranes was characterized using FTIR and 1H NMR spectroscopy. The properties of ion exchange capacity, water uptake, swelling ratio, tensile strength, ionic conductivity, and alkaline stability were measured. Among the prepared membranes, the mPBI‐TP‐15%‐(n‐Bu) exhibited the excellent alkaline stability (only degradation ca. 5% under 1M NaOH aqueous solution at 60 °C for 800 h) and satisfactory OH? conductivity (46.66 mS/cm at 80 °C). The current research provides a useful exploration to commercial application of alkaline fuel cell. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 1087–1096  相似文献   
113.
Herein we report a new ammoniation‐based chemical modification strategy for synthesis of continuous and uniform metal–organic framework (MOF)/polyvinylidene fluoride (PVDF) membranes with attractive performance. Ammoniation can promote the support PVDF membrane to produce amino groups, form a nanoparticle structure, and be well cross‐linked; therefore, the high‐density heterogeneous nucleation sites for MOFs growth were provided and the thermal stability and chemical resistance of composite membranes can be greatly improved. The high‐quality layers of representative Cu‐BTC and ZIF‐8 were synthesized on the chemically modified PVDF membranes. By ammoniation, ZIF‐7 can even be grown under harsh synthetic conditions such as in DMF precursor solutions at 403 K. The fabricated MOF/PVDF composite membranes with excellent hollow fiber structures and enhanced structural stability exhibited high H2 permselectivities for H2/CO2 and H2/N2.  相似文献   
114.
Natural materials and structures are increasingly becoming a source of inspiration for the design novel of engineering systems. In this context, the structure of fish skin, made of an intricate arrangement of flexible plates growing out of the dermis of a majority of fish, can be of particular interest for materials such as protective layers or flexible electronics. To better understand the mechanics of these composite shells, we introduce here a general computational framework that aims at establishing a relationship between their structure and their overall mechanical response. Taking advantage of the periodicity of the scale arrangement, it is shown that a representative periodic cell can be introduced as the basic element to carry out a homogenization procedure based on the Hill-Mendel condition. The proposed procedure is applied to the specific case of the fish skin structure of the Morone saxatilis, using a computational finite element approach. Our numerical study shows that fish skin possesses a highly anisotropic response, with a softer bending stiffness in the longitudinal direction of the fish. This softer response arises from significant scale rotations during bending, which induce a stiffening of the response under large bending curvature. Interestingly, this mechanism can be suppressed or magnified by tuning the rotational stiffness of the scale-dermis attachment but is not activated in the lateral direction. These results are not only valuable to the engineering design of flexible and protective shells, but also have implications on the mechanics of fish swimming.  相似文献   
115.
Five kinds of ammonium groups functionalized partially fluorinated poly(arylene ether) block copolymer membranes were prepared for investigating the structure–property relationship as anion exchange membranes (AEMs). Consequently, the pyridine (PYR)‐modified membrane showed the highest alkaline and hydrazine stability in terms of the conductivity, water uptake, and dry weight. The chloromethylated precursor block copolymers were reacted with amines, such as trimethylamine, N‐butyldimethylamine, 1‐methylimidazole, 1,2‐dimethylimidazole, and PYR to provide the target quaternized poly(arylene ether)s. The structures of the polymers, as well as model compounds and oligomers were well characterized by 1H NMR spectra. The obtained AEMs were subjected to water uptake and hydroxide ion conductivity measurements and stabilities in aqueous alkaline and hydrazine media. The pyridinium‐functionalized quaternized polymers membrane showed the highest alkaline and hydrazine stability with minor losses in the conductivity, water uptake, and dry weight. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 383–389  相似文献   
116.
Polymeric membranes have shown tremendous promise for the separation of CO2 from flue gas streams. However, few systematic studies have been conducted to better understand the impact that chemical functionalities have on membrane-based gas separation performance. To address this gap, we herein describe the synthesis and gas separation performance of a series of vinyl-addition polynorbornenes bearing various CO2-philic functional groups. To facilitate direct comparison between functional groups, each material was designed to maintain a common polymer backbone. Though the incorporation of CO2-philic moieties within a dense polymeric membrane is frequently hypothesized to enhance CO2 solubility, and thereby increase CO2/N2 selectivity, our results demonstrate that the incorporation of CO2-philic groups onto a common polymer backbone do not necessarily result in increased gas separation performance. Experimental and computational results demonstrate that the incorporation of amidoxime groups onto a polynorbornene backbone increase CO2/N2 selectivity, whereas commonly employed ethereal side chains only increased permeability.  相似文献   
117.
Zeolite ZIF-8 has been etched with acid to form microporous ZIF-8-E crystals. These were then introduced into a polyethersulfone (PES) membrane matrix to enhance its CO2/N2 separation performance. Open through pores of size about 100 nm formed in the ZIF-8 crystals allow the ingrowth of polyethersulfone chains, ensuring a reduction in the number of nonselective voids, thereby achieving better interaction between ZIF-8-E and PES. As a result, the CO2/N2 separation performance of the ZIF-8-E/PES membrane increased significantly, showing a CO2 permeability of 15.7 Barrer and a CO2/N2 ideal selectivity of 6.5.  相似文献   
118.
Polymeric membranes are important tools for intensifying separation processes in chemical industries, concerning strategic tasks such as CO2 sequestration, H2 production, and water supply and disposal. Mixed‐matrix and supported membranes have been widely developed; recently many of them have been based on metal–organic frameworks (MOFs). However, most of the impacts MOFs have within the polymer matrix have yet to be determined. The effects related to thermal behavior arising from the combination of MOF ZIF‐8 and polysulfone have now been quantified. The catalyzed oxidation of the polymer is strongly affected by the MOF crystal size and distribution inside the membrane. A 16 wt % 140 nm‐sized ZIF‐8 loading causes a 40 % decrease in the observed activation energy of the polysulfone oxidation that takes place at a temperature (545 °C) 80 °C lower than in the raw polymer (625 °C).  相似文献   
119.
120.
A series of poly(ether sulfone)‐based anion exchange membranes (AEMs), tethering with guanidinium side chains with different spacers, were synthesized via azide‐alkyne cycloaddition, deprotection, and the subsequent ion exchange reactions. The designed polymer structures were verified by the 1H NMR spectra. Because of the appropriate water uptake and formation of interconnected ionic clusters, the GPES‐3C with propyl spacer showed higher conductivity than the GPES‐1C and GPES‐9C, with methylene and nonyl spacers, respectively. Comparatively, the GPES‐EO AEM with two ethylene oxide (EO) spacers exhibited even higher conductivity, these can be interpreted by interconnectivity of ionic channels and hydrophilicity nature of the EO spacer. Additionally, although the GPES membranes displayed sufficient thermal stability, the chemical stability of as‐prepared materials needs to be much improved for fuel cell applications. Overall, these results demonstrated that the properties of “pendent‐type” AEM can be tuned facilely by the spacer types and lengths. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 1313–1321  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号